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1. Introduction

1.1. Homomorphism to cycles

The odd girth of a graph G is the length of a shortest odd cycle of G. The dual version of Zhang’s
strengthening [34] of the well-known Jaeger’s circular flow conjecture [7], when restricted to planar
graphs, is as follows:

Conjecture 1.1 (Jaeger–Zhang Conjecture). Every planar graph of odd girth at least 4k + 1 admits a
homomorphism to C2k+1.

A considerable amount of work has been done related to Jaeger’s circular flow conjecture
and Conjecture 1.1, see [1,6,9,16,27,35] and references therein. In particular, a result of Lovász,
Thomassen, Wu, and Zhang [16] in 2013 implies the following theorem, which is currently the best
general result towards Conjecture 1.1.

Theorem 1.2 ([16]). Every planar graph of odd girth at least 6k+ 1 admits a homomorphism to C2k+1.

Even though Jaeger’s circular flow conjecture (for k ⩾ 3) was disproved in [6], all those
counterexamples found so far are non-planar graphs, and thus Conjecture 1.1 still remains open.
For small k, compared with the odd-girth condition of 6k+1 shown in Theorem 1.2, there are some
improvements towards Conjecture 1.1: For k = 1, it is the famous Grötzsch theorem; for k = 2,
it follows from the results of [3,4] independently that every planar graph of odd girth at least 11
admits a homomorphism to C5; similarly, for k = 3, the odd-girth condition 17 is sufficient, implied
from the results of [3,24] independently.

It is well-known that a graph admits a homomorphism to C2k+1 if and only if it has a circular
2k+1

k -coloring.1 A natural circular coloring conjecture asserts that every planar graph of odd girth
at least 2t + 1 admits a circular 2t+2

t -coloring and Conjecture 1.1 is a part of this conjecture when
t = 2k. For an odd value t , when t = 1 it is the 4-color theorem, and more generally when t = 2k−1
it has been proved in [15] that the odd-girth condition of 6k − 1 is sufficient for a planar graph to
admit a circular 4k

2k−1 -coloring.
In this paper, we consider analogs of Conjecture 1.1 and the general circular coloring problems

or signed planar graphs. A signed graph (G, σ ) is a graph G together with a signature σ : E(G) →

+, −}. We simply write Ĝ if the signature is clear from the context. We call an edge with + (−,
espectively) a positive edge (a negative edge, respectively). A cycle of length ℓ with an odd number
f negative edges is called a negative cycle, denoted by C−ℓ, while a cycle of length ℓ with an even
umber of negative edges is called a positive cycle, denoted by Cℓ. The negative girth of a signed

graph is the length of a shortest negative cycle in it. A homomorphism of a signed graph (G, σ ) to
nother signed graph (H, π ) is a mapping ϕ : V (G) → V (H) that preserves the adjacencies and
he signs of all the closed walks. Naturally, considering signed planar graphs, there is an analogous
uestion of Conjecture 1.1:

uestion 1.3. For a positive integer k, what is the smallest integer gk such that all signed bipartite
lanar graphs of negative girth at least gk admit homomorphisms to C−2k?

This question has been proposed and investigated in [2,19]. Note that the k = 1 case is trivial
with negative girth at least 2) and the k = 2 case was shown in [18] as follows.

heorem 1.4 ([18]). Every signed bipartite planar graph of negative girth at least 8 admits a homomor-
hism to C−4. Moreover, this negative-girth condition is best possible.

In this work, we make some progress on the next two cases (k = 3, 4) of Question 1.3 and prove
the following results.

1 The notion of circular colorings was first introduced by Vince [32]: Given positive integers p and q, a circular
p -coloring of a graph G is a mapping f : V (G) → {1, 2, . . . , p} such that for each edge uv ∈ E(G), q ⩽ |f (u) − f (v)| ⩽ p−q.
q

2



J. Li, Y. Shi, Z. Wang et al. European Journal of Combinatorics 118 (2024) 103941

k
T

c
e
s
c

o

N
d
a
w

a
s
i
g

1

m
a

e
n
p
w
f

D
θ

e

a
c

Theorem 1.5.

(1) Every signed bipartite planar graph of negative girth at least 14 admits a homomorphism to C−6.
(2) Every signed bipartite planar graph of negative girth at least 20 admits a homomorphism to C−8.

Although the above results may suggest that the negative girth increases 6 each time as
increases, we have no evidence to show whether each of the negative-girth conditions for

heorem 1.5 is tight.
Similar to the equivalence between homomorphisms of graphs to C2k+1 and circular 2k+1

k -
olorings of graphs, a homomorphism of a signed bipartite graph to C−2k is proved [21] to be
quivalent to a circular 4k

2k−1 -coloring of the signed graph. The notion of the circular coloring of
igned graphs was introduced in [22]: Given positive integers p and q where p is even and p ⩾ 2q, a
ircular p

q -coloring of a signed graph (G, σ ) is a mapping f : V (G) → {1, 2, . . . , p} such that for each
positive edge uv, q ⩽ |f (u) − f (v)| ⩽ p−q and for each negative edge uv, either |f (u) − f (v)| ⩽ p

2 −q
r |f (u) − f (v)| ⩾ p

2 + q.2 The circular chromatic number of a signed graph (G, σ ) is defined to be
χc(G, σ ) = min{

p
q | (G, σ ) admits a circular p

q -coloring}.
A natural signed graph analog of the circular coloring conjecture has been studied. Kardoš and

arboni recently showed [8] that there is a signed planar graph that is not circular 4-colorable,
isproving a conjecture of [17]. Generalizing this example, Naserasr, Wang, and Zhu [22] gave lower
nd upper bounds on the supremum of the circular chromatic numbers of signed planar graphs,
hich are 4+

2
3 and 6, respectively. In this direction, we provide some upper bounds on the circular

chromatic numbers of signed planar graphs with given girth conditions.

Theorem 1.6. Let G be a planar graph of girth g and let σ be a signature on G.

(1) If g ⩾ 4, then χc(G, σ ) ⩽ 4.
(2) If g ⩾ 7, then χc(G, σ ) ⩽ 3.
(3) If g ⩾ 10, then χc(G, σ ) ⩽ 8

3 .

Note that (1) and (2) of Theorem 1.6 are already known in [17,20,22], and our methods provide
lternative (and unified) proofs of those two results. In particular, the proof of Theorem 1.6 (2) is
horter than that of [20] using the notion of homomorphisms of signed graphs. Moreover, the result
n (3) provides a better upper bound on the circular chromatic number of signed planar graphs of
irth at least 10.

.2. Strongly Zℓ-connected graphs

Our approach to Theorems 1.5 and 1.6 relies on some stronger orientation results, which are
otivated from a newly-developed duality theorem from [14]: A signed bipartite plane graph
dmits a homomorphism to C−2k if and only if its dual signed Eulerian plane graph admits a mod

2k-orientation. Given a signed plane graph (G, σ ), its dual signed plane graph, denoted by (G∗, σ ∗),
is defined as follows: G∗ is the dual of the underlying graph G and σ ∗(e∗) = σ (e) for each edge
∗

∈ E(G∗) which is the dual edge of e ∈ E(G). To prove our main results, we study the related
otions of orientations and flows with boundaries and develop some tools in this direction. In this
aper, Zℓ, for a positive integer ℓ, denotes the group that consists of the elements {0, 1, 2, . . . , ℓ−1}
ith addition modulo ℓ as the operation. Sometimes, we may view the elements in Zℓ as integers

or convenience.

efinition 1.7. Given an integer ℓ ⩾ 2, a graph G is called strongly Zℓ-connected if for any mapping
: V (G) → Zℓ with

∑
v∈V (G) θ (v) ≡ |E(G)| (mod ℓ), there exists an orientation D on G such that for

ach v ∈ V (G), d+

D (v) ≡ θ (v) (mod ℓ) where d+

D (v) is the out-degree of v under D.

2 Intuitively, we may view p points placed on a circle with equal distance, the images of two vertices joined with
positive edge are at circular distance at least q while the images of two vertices joined with a negative edge are at

ircular distance at most p
− q.
2
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It was observed in [27] that a graph G is strongly Z2-connected if and only if it is connected. For
eneral ℓ, it has been shown that every (3ℓ − 3)-edge-connected graph is strongly Zℓ-connected
n [16,33]. Those results are also related to the tree decomposition and factorization of graphs
s studied in [11,28,29]. For planar graphs, it is proved in [12,25] that every 5-edge-connected
lanar graph is strongly Z3-connected and it is shown in [3] that every 11-edge-connected (or
7-edge-connected) planar graph is strongly Z5-connected (respectively, strongly Z7-connected).
Motivated by these known results, we prove the following main result in this paper, which

improves the general result of [16] for the cases when ℓ = 4, 6, 8.

Theorem 1.8.

(1) Every 8-edge-connected planar graph is strongly Z4-connected.
(2) Every 14-edge-connected planar graph is strongly Z6-connected.
(3) Every 20-edge-connected planar graph is strongly Z8-connected.

Using Theorem 1.8, we provide an alternative proof of Theorem 1.4 and, furthermore, prove
Theorems 1.5 and 1.6.

The proof of Theorem 1.8 is based on a modified potential method, which can be traced
back to [3,10]. In fact, a stronger technical result (Theorem 4.6) is established on the strong
Z2k-connectivity which implies Theorem 1.8. The main idea in the proof of Theorem 4.6 is as
follows: We introduce a weight function in Formula (5) so that the studied graph class is closed
under contraction and each element inside has enough density. With the setting of orientation
with boundaries, a potential method is applied, which allows the usage of lifting and contraction
operations frequently to find sufficiently many reducible configurations.

The rest of the paper is organized as follows. In the next section, we give basic preliminaries.
In Section 3, serving for induction bases of Theorem 4.6, we provide some sufficient conditions
for small graphs (on at most four vertices) to be strongly Zℓ-connected for ℓ ⩾ 2. In Section 4,
we study the properties of the minimum counterexample to Theorem 4.6. Based on the weight
function that we introduce there (applied in the potential method), using lifting and contraction
operations, we first provide some forbidden configurations for every even value ℓ in Section 4.1.
Then we discuss each of the cases ℓ ∈ {4, 6, 8} and conclude with separate discharging phases in
Sections 4.2, 4.3, and 4.4, finishing the proof Theorem 4.6 and thus Theorem 1.8. In Section 5, as
applications of our group connectivity results, we provide the proofs of Theorems 1.4, 1.5 and 1.6. In
Section 6, we conclude by constructing a signed bipartite planar graph whose dual does not admit
a homomorphism to C−2k.

2. Preliminaries

All graphs considered in this work are allowed to have parallel edges but no loops. Let G = (V , E)
be a graph. For a connected pair uv of G, we denote by µG(uv) the number of parallel edges joining
u and v. The multiplicity of G, denoted by µ(G), is the maximum value of µG(uv), taken over all
connected pairs uv of G. The number of vertices of G is denoted by v(G) and the number of edges
of G is denoted by e(G). Moreover, dG(v) denotes the degree of a vertex v in G, δ(G) denotes the
minimum degree of G, and ∆(G) denotes the maximum degree of G. A vertex of odd (or even)
degree is called an odd vertex (respectively, even vertex). Given a subset X of V (G), we denote by
G[X] the subgraph induced by X , denote by [X, X c

] the edge-cut between X and X c
:= V (G) \X , and

let dG(X) = |[X, X c
]| (or d(X) instead if the graph G is clear from the context).

We use the following notations to denote three types of graphs on at most 4 vertices:
(1) αK2 is the graph on two vertices with α parallel edges in between;
(2) Ta,b,c is the multi-triangle on the vertex set {x, y, z} with µ(xy) = a, µ(yz) = b and µ(zx) = c;
(3) Qa,b,c,d is the multi-cycle on 4 vertices x, y, z, w such that µ(xy) = a, µ(yz) = b, µ(zw) = c

and µ(wx) = d.
See Fig. 1 for an illustration.
Given a planar graph G with a planar embedding, let F (G) denote the set of faces and let ℓ(f )

denote the length of the boundary cycle of face f ∈ F (G). A face f with ℓ(f ) = k (or ℓ(f ) ⩾ k) is
4



J. Li, Y. Shi, Z. Wang et al. European Journal of Combinatorics 118 (2024) 103941

c
e

d

P
G

O

Fig. 1. The graphs αK2, Ta,b,c , and Qa,b,c,d .

alled a k-face (respectively, k+-face). Two faces are adjacent if their boundaries share a common
dge. Let f1f2 · · · fs be a face chain of length s− 1 if fi and fi+1 are adjacent for i ∈ [s− 1]. Moreover,

we say two faces f and f ′ are weakly adjacent if there is a face chain ff1 · · · ft f ′, where fi is a 2-face
for each i ∈ [t]. Here the length of ff1 · · · ft f ′ can be 1, in which case f and f ′ are adjacent.

Given an orientation on G, we use (u, v) to denote a directed edge oriented from u to v. Given an
orientation D and a vertex v ∈ V (G), we denote the set of edges oriented from v (i.e., out-edges) by
E+

D (v) and the set of edges oriented towards v (i.e., in-edges) by E−

D (v), and denote the out-degree
and in-degree of v on G by d+

D (v) and d−

D (v), respectively. Given a graph G, an orientation D on G
and a mapping f : E(G) → Z, let

∂Df (v) :=

∑
e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e)

for each vertex v ∈ V (G).
Rather than using out-degrees, it is much more convenient to use the differences between

in-degree and out-degree in certain orientations. With this notation, an equivalent definition of
strongly Zℓ-connected graphs (Definition 1.7), stated below, will be used frequently in our proofs.

Definition 2.1 ([15]). (1) Given a graph G, a (2ℓ, β)-boundary of G is a mapping β : V (G) →

{0, ±1, . . . ,±ℓ} such that for each vertex v ∈ V (G), β(v) ≡ d(v) (mod 2) and
∑

v∈V (G) β(v) ≡ 0
(mod 2ℓ).

(2) Given a (2ℓ, β)-boundary of G, an orientation D on G is a (2ℓ, β)-orientation if it satisfies that
+

D (v) − d−

D (v) ≡ β(v) (mod 2ℓ) for each vertex v ∈ V (G).

roposition 2.2 ([13]). A graph G is strongly Zℓ-connected if and only if for any (2ℓ, β)-boundary of
, it admits a (2ℓ, β)-orientation.

bservation 2.3. Let G = (V , E) be a graph and let E ′ be a subset of E. Let G′ be a graph obtained from
G by deleting E ′. If G′ is strongly Zℓ-connected, then G is also strongly Zℓ-connected.

Proof. Let θ : V (G) → Zℓ with
∑

v∈V (G) θ (v) ≡ |E(G)| (mod ℓ) and let D′ be an orientation on the
edges in E ′. We define a new mapping θ ′

: V (G) → Zℓ as follows: θ ′(v) := θ (v) − d+

D′ (v). Clearly,
the mapping θ ′ satisfies that

∑
v∈V (G′) θ

′(v) ≡ |E(G′)| (mod ℓ). Since G′ is strongly Zℓ-connected,
by Definition 1.7 there is an orientation D′′ on G′ such that d+

D′′ (v) ≡ θ ′(v) (mod ℓ). Note that the
orientation D = D′

∪D′′ is an orientation on G such that d+

D (v) ≡ θ (v) (mod ℓ) and thus G is strongly

Zℓ-connected. □

5
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The following result provides us a necessary density condition for graphs to be strongly Zℓ-
onnected.

roposition 2.4 ([13]). If a graph G is strongly Zℓ-connected, then it contains ℓ − 1 edge-disjoint
spanning trees, and particularly, |E(G)| ⩾ (ℓ − 1)(|V (G)| − 1).

Thus the minimum degree of a strongly Zℓ-connected graph is at least ℓ − 1. The next lemma
shows that for αK2 this necessary condition is also sufficient.

Lemma 2.5. The graph αK2 is strongly Zℓ-connected if and only if α ⩾ ℓ − 1.

Proof. Let αK2 be a graph on two vertices v1 and v2 with α parallel edges. In one direction, assuming
that αK2 is strongly Zℓ-connected, it follows from Proposition 2.4 that α ⩾ ℓ − 1. In the other
direction, assuming α ⩾ ℓ − 1, by Observation 2.3 it suffices to show that (ℓ − 1)K2 is strongly
Zℓ-connected. For any mapping θ : {v1, v2} → Zℓ satisfying that θ (v1)+ θ (v2) ≡ ℓ − 1 (mod ℓ), let
be an integer with 0 ⩽ k ⩽ ℓ− 1 and k ≡ θ (v1) (mod ℓ). We can orient k edges from v1 to v2 and
−1− k edges from v2 to v1, and such an orientation is called D. Note that d+

D (v1)+d+

D (v2) = ℓ−1
nd for each i ∈ {1, 2}, d+

D (vi) ≡ θ (vi) (mod ℓ). Therefore, (ℓ − 1)K2 is strongly Zℓ-connected. □

.1. Contraction and lifting

To contract an edge uv of a graph is an operation to identify the endpoints u and v, and then
elete the resulting loop. Moreover, to contract a connected subgraph H of G is an operation to
ontract all the edges of H , and we denote the new graph by G/H .

bservation 2.6. Given a graph G and its connected subgraph H, let G′
= G/H and let w denote the

ew vertex obtained from contracting H. For any (2ℓ, β)-boundary of G, a mapping β ′
: V (G′) →

{0, ±1, . . . ,±ℓ} is defined as follows: β ′(w) ≡
∑

v∈V (H) β(v) (mod 2ℓ) and for any vertex v ∈

V (G′) \ {w}, β ′(v) = β(v). Then it is a (2ℓ, β ′)-boundary of G′.

roof. Since
∑

v∈V (G′) β
′(v) ≡

∑
v∈V (G) β(v) ≡ 0 (mod 2ℓ),

β ′(w) ≡

∑
v∈V (H)

β(v) ≡

∑
v∈V (H)

dG(v) = dG′ (w) +

∑
v∈V (H)

dH (v) ≡ dG′ (w) (mod 2),

nd β ′(v) ≡ dG(v) = dG′ (v) (mod 2) for v ∈ V (G′) \ {w}, the mapping β ′ is a (2ℓ, β ′)-boundary of
′. □

When it is clear from the context, we say that it is a corresponding (2ℓ, β ′)-boundary of G/H
ith respect to the (2ℓ, β)-boundary of G.
As contraction is a useful operation in the study of flows and orientations, we generalize

emma 1.6 of [3] and obtain the next lemma which is a key fact in our later proofs. Note that
he proof of the following lemma is an analog of the proof of Lemma 1.6 of [3] and thus we leave
he details to the reader.

emma 2.7. Given a graph G with a (2ℓ, β)-boundary and its connected subgraph H, let G′
= G/H.

For any given (2ℓ, β)-boundary of G, assume that G′ has a corresponding (2ℓ, β ′)-boundary as defined
above. If H is strongly Zℓ-connected, then every (2ℓ, β ′)-orientation on G′ can be extended to a (2ℓ, β)-
orientation on G. In particular, if H and G′ are both strongly Zℓ-connected, then G is also strongly
Zℓ-connected.

Given a vertex v of G, we call two adjacent edges uv, vw an edge pair at v. To lift at v is an
operation to delete some edge pairs at v and for each edge pair uv, vw (being deleted), add one
edge connecting u and w (allowing parallel edges) to the graph G. Sometimes, we say to lift an edge
triple wx, xy, yz if we recursively lift edge pairs wx, xy and then wy, yz, noting that wy is created by
6
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a

first lifting the edge pair wx, xy, and this operation creates an edge wz in the end. Here we slightly
buse the notion of ‘‘edge’’ when there is no confusion about which edge we are referring to.
The lifting operation also plays an important role in the study of strongly Zℓ-connected graphs.

Let G′ be a graph obtained from G by lifting some edge pairs at a vertex v. Observe that for
any (2ℓ, β)-boundary of G, any (2ℓ, β)-orientation on G′ can be extended naturally to a (2ℓ, β)-
orientation on G by orienting those lifted edge pairs. We generalize a result of [3] as follows.

Proposition 2.8 ([3]). Given a graph G and a vertex v of G, let G′ be a graph obtained from G by lifting
some edge pairs at v and let G′′ be a graph obtained from G′ by deleting the vertex v. Then the following
statements hold.

(1) Given a connected subgraph H of G′, if H and G′/H are both strongly Zℓ-connected, then G is also
strongly Zℓ-connected.

(2) If dG′ (v) ⩾ ℓ − 1 and G′′ is strongly Zℓ-connected, then G′ and G are also strongly Zℓ-connected.

Proof. (1). By Lemma 2.7, G′ is strongly Zℓ-connected. By the above observation, G is also strongly
Zℓ-connected.

(2). Let G0 = G′/G′′. Note that G0 is αK2 with α ⩾ ℓ − 1. It follows from Lemma 2.5 that G0 is
strongly Zℓ-connected. Thus, by Lemma 2.7, G′ is also strongly Zℓ-connected, so is G. □

2.2. Vertex partition

Given a graph G, a collection of subsets of V (G), denoted by P = {P1, . . . , Pt}, is called a partition
of V (G) if it satisfies that for any distinct i, j ∈ [t], Pi ∩ Pj = ∅ and

⋃
i∈[t] Pi = V (G). Each Pi is called

a part of P . Given a graph G and a partition P = {P1, . . . , Pt} of V (G), let G/P denote the graph
obtained from G by identifying all the vertices of Pi for i ∈ [t] and deleting the resulting loops.

Definition 2.9. Let P = {P1, . . . , Pt} be a partition of V (G).

• A partition P is said to be trivial if each part Pi consists of only one single vertex.
• A partition P is said to be almost trivial if there is one part Pj satisfying that |Pj| = 2 and all

the other parts have exactly one vertex in each of them.
• If a partition is neither trivial nor almost trivial, then we call it normal.

Both almost trivial partitions and normal partitions are called nontrivial partitions. In this paper,
we exclude the partition with a single part {V (G)}.

Definition 2.10. Let P = {P1, P2, . . . , Pt} and P ′
= {P ′

1, P
′

2, . . . , P
′
s} be two partitions of V (G), we

say P ′ is a refinement of P , if P ′ is obtained by partitioning some Pi of P into smaller sets. More
precisely, we have s ⩾ t , and for every P ′

i ∈ P ′ there exists Pj ∈ P such that P ′

i ⊆ Pj.

Given a graph G and a connected subgraph H of G, let G′
= G/H and let x denote the vertex of

G′ obtained by contraction. For any partition P ′
= {P1, P2, . . . , Pt} of V (G′), assuming that x ∈ P1,

we define P to be the partition of V (G) corresponding to P ′ of V (G/H) as follows:

P = {P1 ∪ V (H) \ {x}, P2, . . . , Pt}.

Observation 2.11. Given a graph G and its connected subgraph H, let G′
= G/H. For any partition P ′

of V (G′) and the partition P of V (G) corresponding to P ′ of V (G′), we know G/P = G′/P ′.

In Section 3, we aim to find some necessary conditions for small graphs to be strongly Zℓ-
connected. Our method somehow relies on the existence of sufficiently many edge-disjoint spanning
trees on the given graph. In this direction, we need the well-known Nash-Williams–Tutte Theorem.

Theorem 2.12 (Nash-Williams–Tutte Theorem [23,31]). A graph G contains t edge-disjoint spanning
trees if and only if for any partition P = {P1, P2, . . . , Ps} of V (G), there are at least t(s − 1) edges

connecting the parts of P .

7
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2.3. The γ -function and Hakimi’s orientation theorem

To study the (Zℓ, β)-orientation of a graph, in [16], a tool called τ -function has been intro-
uced. Similarly, in the study of (2ℓ, β)-boundary and (2ℓ, β)-orientation of a graph, we find a
orresponding ‘‘γ -function’’ with some properties.

emma 2.13. For any (2ℓ, β)-boundary of G, there exists an integer-valued function γ : V (G) →

0, ±1, . . . ,±(2ℓ − 1)} such that

(1) for each vertex v ∈ V (G), γ (v) ≡ β(v) (mod 2ℓ) and γ (v) ≡ d(v) (mod 2).
(2)

∑
v∈V (G) γ (v) = 0.

(3) maxv∈V (G){γ (v)} − minv∈V (G){γ (v)} ⩽ 2ℓ.

roof. First of all, given a (2ℓ, β)-boundary of G, we can easily find a mapping γ : V (G) →

0, ±1, . . . ,±(2ℓ − 1)} satisfying that γ (v) ≡ β(v) (mod 2ℓ) and γ (v) ≡ d(v) (mod 2) for each
ertex v ∈ V (G).
For the second condition, we assume to the contrary that

∑
v∈V (G) γ (v) ̸= 0 and choose∑

v∈V (G) γ (v)| to be minimized. By symmetry, suppose that
∑

v∈V (G) γ (v) > 0, and thus there
xists at least one vertex, which is called v∗, such that γ (v∗) > 0. Furthermore, as γ (v) ≡ β(v)
mod 2ℓ),

∑
v∈V (G) γ (v) must be a multiple of 2ℓ and so

∑
v∈V (G) γ (v) ⩾ 2ℓ. We define a new

apping γ ′
: V (G) → {0, ±1, . . . ,±(2ℓ − 1)} such that γ ′(v∗) = γ (v∗) − 2ℓ and γ ′(v) = γ (v)

or every v ̸= v∗. Note that such γ ′ satisfies Condition (1). However,

|

∑
v∈V (G)

γ ′(v)| = |

∑
v ̸=v∗

γ (v) + (γ (v∗) − 2ℓ)| = |

∑
v∈V (G)

γ (v) − 2ℓ| < |

∑
v∈V (G)

γ (v)|,

contradiction.
For the last one, assume that there exists a function γ satisfying Conditions (1) and (2) but not

3), which means maxv∈V (G){γ (v)} − minv∈V (G){γ (v)} > 2ℓ. We choose such a counterexample to
atisfy the following conditions in this order of priority:

(i) |maxv∈V (G){γ (v)} − minv∈V (G){γ (v)}| is minimized;
(ii) |{x : γ (x) = maxv∈V (G){γ (v)}}| + |{y : γ (y) = minv∈V (G){γ (v)}}| is as small as possible.

et x1 and x2 be two vertices satisfying that γ (x1) = maxv∈V (G){γ (v)} and γ (x2) = minv∈V (G){γ (v)}.
o we have that γ (x1)−γ (x2) > 2ℓ. We define a new mapping γ ′

: V (G) → {0, ±1, . . . ,±(2ℓ−1)}
uch that

γ ′(x1) = γ (x1) − 2ℓ, γ ′(x2) = γ (x2) + 2ℓ, and γ ′(v) = γ (v) for all the other v ∈ V (G).

learly, γ ′ also satisfies Conditions (1) and (2). Moreover, since

γ (x1) = max
v∈V (G)

{γ (v)} > γ (x2) + 2ℓ = γ ′(x2) and γ (x2) = min
v∈V (G)

{γ (v)} < γ (x1) − 2ℓ = γ ′(x1),

e have x1 /∈ {u : γ ′(u) = minv∈V (G){γ
′(v)}} and x2 /∈ {u : γ ′(u) = maxv∈V (G){γ

′(v)}},
therwise we obtain a contradiction to Condition (i). In this case, |{x : γ ′(x) = maxv∈V (G){γ

′(v)}}| +
|{y : γ ′(y) = minv∈V (G){γ

′(v)}}| is smaller, contradicting Condition (ii). □

It is easy to see that any γ -orientation with a function γ defined in Lemma 2.13 is in-
deed a (2ℓ, β)-orientation on G. To determine the existence of the ‘‘γ -orientation’’ and thus
(2ℓ, β)-orientation of G, we also need the following Hakimi’s orientation theorem.

Theorem 2.14 (Hakimi’s Orientation Theorem [5]). Let G be a graph and γ be a mapping γ : V (G) → Z
satisfying that γ (v) ≡ d(v) (mod 2) for each vertex v ∈ V (G) and

∑
v∈V (G) γ (v) = 0. The following

statements are equivalent.

(i) There exists an orientation D on G such that d+(v) − d−(v) = γ (v) for v ∈ V (G).
8
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(ii) Every subset S of V (G) satisfies |
∑

v∈S γ (v)| ⩽ d(S).

We may define those vertex subsets not satisfying the second statement of Theorem 2.14 to be
‘bad’’, which is formally stated as follows.

efinition 2.15. Given a graph G and a mapping γ : V (G) → {0, ±1, . . . ,±(2ℓ − 1)} with
γ (v) ≡ d(v) (mod 2) for each v ∈ V (G) and

∑
v∈V (G) γ (v) = 0, a vertex subset S ⊂ V (G) is called

bad with respect to γ if |
∑

v∈S γ (v)| > d(S).

Note that for any subset S ⊂ V (G), |
∑

v∈Sc γ (v)| = |−
∑

v∈S γ (v)|. Since d(S) = d(Sc), if S is a
ad set, then its complement Sc is also a bad set. For example, for graphs on three vertices Ta,b,c ,

we may only consider one type of bad sets (i.e., singleton vertex sets).

3. Small strongly Zℓ-connected graphs

In this section, for mathematical induction bases, we shall provide some sufficient conditions,
for example, high edge-connectivity and minimum degree, under which some small graphs (on at
most 4 vertices) are proved to be strongly Zℓ-connected for ℓ ⩾ 3. We have seen in Lemma 2.5 that
K2 is strongly Zℓ-connected if and only if α ⩾ ℓ−1. Now we consider the graphs on three vertices.

emma 3.1. Let Ta,b,c be a multi-triangle on the vertex set {v1, v2, v3} with µ(v1v2) = a, µ(v2v3) = b,
and µ(v3v1) = c. If a + b + c ⩾ 2ℓ − 2 and δ(Ta,b,c) ⩾ ℓ − 1, then Ta,b,c is strongly Zℓ-connected.

Proof. By Observation 2.3, it is enough to prove the claim with the assumption a+ b+ c = 2ℓ − 2
and δ(G) ⩾ ℓ−1. Suppose to the contrary that G is a Ta,b,c with a+b+c = 2ℓ−2, δ(G) ⩾ ℓ−1 but not
strongly Zℓ-connected. To obtain a contradiction, by Hakimi’s orientation theorem (Theorem 2.14),
it suffices to prove the next claim.

Claim. Given a (2ℓ, β)-boundary of G, assume that G has no (2ℓ, β)-orientation. Then for any function
γ : V (G) → {0, ±1, . . . ,±(2ℓ − 1)} with γ (vi) ≡ β(vi) (mod 2ℓ), γ (vi) ≡ d(vi) (mod 2) for every
i ∈ {1, 2, 3}, we have

|γ (vi)| ⩽ d(vi), ∀i ∈ {1, 2, 3}.

Suppose to the contrary, without loss of generality, G has a bad set S = {v1} with |γ (v1)| > d(v1).
There are two possibilities that either γ (v1) > d(v1) or −γ (v1) > d(v1).

We first assume that γ (v1) > d(v1). Then we have

2ℓ − 1 ⩾ γ (v1) ⩾ d(v1) + 2 ⩾ ℓ + 1, (1)

and

− d(v1) ⩽ −ℓ + 1 ⩽ γ (v1) − 2ℓ ⩽ 0. (2)

Since a + b + c = 2ℓ − 2 and δ(G) ⩾ ℓ − 1, by Nash-Williams–Tutte Theorem (Theorem 2.12) it is
easy to verify that G contains ℓ − 1 edge-disjoint spanning trees. Let T be the set of those ℓ − 1
edge-disjoint spanning trees. Note that

⋃
T∈T E(T ) = E(G). At the vertex v1, assume that there are

s edge-disjoint spanning trees T of T such that dT (v1) = 2 (denoted by T 2) and t edge-disjoint
spanning trees T such that dT (v1) = 1 (denoted by T 1). Considering the relation 2s+ t = d(v1) and
s + t = ℓ − 1, we have that s = d(v1) − ℓ + 1 and t = 2ℓ − d(v1) − 2. Those two values are both
non-negative following from Condition (1). Now we lift d(v1) − ℓ + 1 pairs of edges from all those
T 2’s at the vertex v1. Note that there are 2ℓ − d(v1) − 2 edges left at vertex v1. By Conditions (1)
and (2), we can orient 2ℓ − γ (v1) ⩾ 0 edges into v1 and the rest γ (v1) − d(v1) − 2 ⩾ 0 edges
one-in-one-out in pairs. Therefore, d+(v1) − d−(v1) = γ (v1) − 2ℓ ≡ β(v1) (mod 2ℓ).

We now assume that −γ (v1) > d(v1) and in this case we have

2ℓ − 1 ⩾ −γ (v ) ⩾ d(v ) + 2 ⩾ ℓ + 1, (3)
1 1

9
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and

− d(v1) ⩽ −ℓ + 1 ⩽ −γ (v1) − 2ℓ ⩽ 0. (4)

imilarly, let T be the set of ℓ − 1 edge-disjoint spanning trees. we can also compute the number
f edge-disjoint spanning trees T 2 of T such that dT2 (v1) = 2 is d(v1) − ℓ + 1 and the number of

edge-disjoint spanning trees T 1 such that dT1 (v1) = 1 is 2ℓ−d(v1)−2 as in the previous case. Both of
these two values are non-negative by Condition (3). Thus we can lift d(v1)−ℓ+1 pairs of edges from
all those T 2’s at the vertex v1 and there are 2ℓ− d(v1)− 2 edges left at vertex v1. By Conditions (3)
and (4), we are able to orient 2ℓ + γ (v1) edges out from v1 and the left −(γ (v1)+ d(v1))− 2 edges
one-in-one-out in pairs. Therefore, we have d+(v1) − d−(v1) ≡ β(v1) (mod 2ℓ).

In both cases, we have achieved the boundary at v1. We denote by G′ the resulting graph obtained
from G by lifting those edge pairs (of T 2’s) and deleting v1. Note that G′ has two vertices and
2ℓ − 2− d(v1)+ (d(v1)− ℓ + 1) = ℓ − 1 edges. By Lemma 2.5, G′ is strongly Zℓ-connected. Thus, by
Proposition 2.8, for any (2ℓ, β)-boundary, G has a (2ℓ, β)-orientation, a contradiction. □

By Nash-Williams–Tutte Theorem, a multi-triangle Ta,b,c contains ℓ − 1 edge-disjoint spanning
trees if and only if a + b + c ⩾ 2ℓ − 2 and δ(G) ⩾ ℓ − 1. Thus following from Proposition 2.4 and
Lemma 3.1, we have the next corollary.

Corollary 3.2. A multi-triangle Ta,b,c contains ℓ − 1 edge-disjoint spanning trees if and only if Ta,b,c is
strongly Zℓ-connected.

Note that there is an alternate proof of Lemma 3.1 and here we give this relatively complex proof
for expressing the proof ideas of the following lemma on four vertices.

Lemma 3.3. Let G be a graph on four vertices. If G contains ℓ − 1 edge-disjoint spanning trees and
e(G) ⩾ 3ℓ − 2, then G is strongly Zℓ-connected.

Proof. By Observation 2.3, it suffices to prove the claim assuming that G contains ℓ−1 edge-disjoint
spanning trees and e(G) = 3ℓ − 2. Assume to the contrary that G is not strongly Zℓ-connected. Let
V (G) = {v1, v2, v3, v4}. As G contains ℓ − 1 edge-disjoint spanning trees, for any proper subset
S ⊂ V (G), d(S) ⩾ ℓ − 1.

Claim 3.3.1. G is (ℓ + 1)-edge-connected. In particular, δ(G) ⩾ ℓ + 1.

Proof. Assume to the contrary that G is not (ℓ + 1)-edge-connected and we discuss two cases:
(1). There is a vertex v such that d(v) = δ(G) ⩽ ℓ; (2). There is a subset S of size 2 such that
d(S) ⩽ ℓ. In the first case, noting that e(G) = 3ℓ − 2, G − v has at least 2ℓ − 2 edges and contains
ℓ − 1 edge-disjoint spanning trees. By Corollary 3.2, G− v is strongly Zℓ-connected. It follows from
Proposition 2.8 (2) that G is strongly Zℓ-connected, a contradiction. In the second case, without loss
of generality, we assume that S = {v1, v2}. As there are at least 2ℓ − 2 edges in E(G) \ [S, Sc], there
are at least ℓ−1 edges in either G[S] or G[Sc], without loss of generality, say G[S]. It implies that G[S]
is strongly Zℓ-connected. Let H = G/G[S]. Noting that H contains ℓ−1 edge-disjoint spanning trees,
by Corollary 3.2 H is strongly Zℓ-connected. Therefore, by Lemma 2.7, G is strongly Zℓ-connected,
a contradiction. ⋄

Claim 3.3.2. The maximum degree ∆(G) is at most 3ℓ − 7.

Proof. Suppose to the contrary that ∆(G) ⩾ 3ℓ − 6. Let v1 be the vertex of degree ∆(G). Since
e(G) = 3ℓ − 2, there are at most 4 edges among the remaining three vertices. Thus the average
degree among vertices v2, v3 and v4 is 3ℓ−6+4×2

3 = ℓ +
2
3 < ℓ + 1, which contradicts the fact that

(G) ⩾ ℓ + 1. ⋄

We next prove a similar claim as in Lemma 3.1.
10
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Claim 3.3.3. Given a (2ℓ, β)-boundary of G, if G has no (2ℓ, β)-orientation, then for any function
γ : V (G) → {0, ±1, . . . ,±(2ℓ − 1)} with γ (vi) ≡ β(vi) (mod 2ℓ), γ (vi) ≡ d(vi) (mod 2) for any
∈ [4], we have

|γ (vi)| ⩽ d(vi), ∀i ∈ [4].

roof. Without loss of generality, suppose that G has a bad set S = {v1} and thus |γ (v1)| > d(v1).
Here, we only consider the case γ (v1) > d(v1). The other case −γ (v1) > d(v1) can be discussed
similarly, so we omit the details. Note that in this case,

2ℓ − 1 ⩾ γ (v1) > d(v1) ⩾ ℓ + 1 and − d(v1) ⩽ −(ℓ + 1) < γ (v1) − (2ℓ − 1) ⩽ 0.

n particular, d(v1) ⩽ 2ℓ − 2.
Let T be a set of the ℓ − 1 edge-disjoint spanning trees of G. Since e(G) = 3ℓ − 2 and every

panning tree has exactly three edges, we have 3ℓ − 2 − 3(ℓ − 1) = 1 edge not contained in any
panning tree of T . We assume that at the vertex v1, there are a spanning trees having degree
ne, b spanning trees having degree two, and c spanning trees having degree three. We have
+ b + c = ℓ − 1 and a + 2b + 3c ∈ {d(v1), d(v1) − 1}, solving which we know a ⩾ c.
When some spanning tree Ti has degree two at vertex v1, we can directly lift this pair of edges

nd obtain a spanning tree T ′

i of G−v1; for any Ti having degree three at vertex v1, as a ⩾ c , we can
lways find another spanning tree Tj with degree one at vertex v1. Applying some proper switching
dges of Ti and Tj, we can obtain two new spanning trees T ′

i and T ′

j both of which have degree two
t v1. Then we lift these two pairs of edges of T ′

i and T ′

j .
So we can lift 2b+4c ∈ {2d(v1)−(2ℓ−2), 2d(v1)−2ℓ} edges of G and orient the remaining either

2ℓ− 2)− d(v1) or 2ℓ− d(v1) edges. More precisely, we orient 2ℓ− γ (v1) edges into v1 and the left
dges choose one-in-one-out in pairs, and thus we achieve the (2ℓ, β)-boundary β(v1). Deleting v1
rom G, the resulting graph G′ (on three vertices) has either 2ℓ − 1 or 2ℓ − 2 many edges (followed
rom 3ℓ− 2− d(v1)+ k, where k ∈ {d(v1)− (ℓ− 1), d(v1)− ℓ}, and thus by Lemma 3.1 it is strongly
ℓ-connected. By Proposition 2.8, G has a (2ℓ, β)-orientation, a contradiction. ⋄

By Claim 3.3.3, we know the set containing only one vertex cannot be a bad set corresponding to
given γ -function and thus a given (2ℓ, β)-boundary. So the bad set must be in the form of {vi, vj}

or i ̸= j. Given a (2ℓ, β)-boundary, assume that there is a function γ satisfying the conditions in
emma 2.13. Without loss of generality, we may also assume that

max
v∈V (G)

{γ (v)} = γ (v1) ⩾ γ (v2) ⩾ γ (v3) ⩾ γ (v4) = min
v∈V (G)

{γ (v)}.

o γ (v1)−γ (v4) ⩽ 2ℓ. By symmetry, suppose that maxv∈V (G){γ (v)} ⩾ −minv∈V (G){γ (v)}. In this case,
e claim that −ℓ ⩽ γ (v4) ⩽ γ (v3) < 0. Otherwise, if γ (v3) ⩾ 0, then γ (v1) ⩽ ℓ. As G is (ℓ + 1)-
dge-connected, any two-vertex set {vi, vj} satisfies that |γ (vi) + γ (vj)| ⩽ ℓ < ℓ + 1 ⩽ d({vi, vj})
nd thus it is not a bad set, a contradiction.

laim 3.3.4. For {vi, vj} ⊆ V (G) with γ (vi) + γ (vj) ⩾ 0, we have

either γ (vi) + γ (vj) ⩽ d({vi, vj}) or |γ (vi) + γ (vj) − 2ℓ| ⩽ d({vi, vj}).

roof. We prove this claim by contradiction, that is to say, there exists a bad set S = {vi, vj} such
hat γ (vi) + γ (vj) > d({vi, vj}) and |γ (vi) + γ (vj) − 2ℓ| > d({vi, vj}). We claim that γ (vi) + γ (vj) −

ℓ < 0, as if not, γ (vi) + γ (vj) − 2ℓ > d({vi, vj}) and thus 2minv∈V (G){γ (v)} ⩽
∑

v∈Sc γ (v) =

(γ (vi) + γ (vj)) < −d({vi, vj}) − 2ℓ < −2ℓ, and it implies that γ (v4) = minv∈V (G){γ (v)} < −ℓ, a
ontradiction. Thus

γ (vi) + γ (vj) > d({vi, vj}) and − (γ (vi) + γ (vj) − 2ℓ) > d({vi, vj}),

olving which we obtain that d({vi, vj}) < ℓ, contradicting the fact that G is (ℓ + 1)-edge-
onnected. ⋄
11
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Claim 3.3.5. For {vi, vj} ⊆ V (G) with γ (vi) + γ (vj) ⩾ 0, we have γ (vi) + γ (vj) ⩽ 2ℓ. Moreover, if
({vi, vj}) ⩾ 2ℓ − 1, then

γ (vi) + γ (vj) ⩽ d({vi, vj}) and |γ (vi) + γ (vj) − 2ℓ| ⩽ d({vi, vj}).

roof. Let S = {vi, vj}. For minv∈V (G){γ (v)} ⩾ −ℓ, we have

γ (vi) + γ (vj) = −

∑
v∈Sc

γ (v) ⩽ −2 min
v∈V (G)

{γ (v)} ⩽ 2ℓ.

oreover, if d({vi, vj}) ⩾ 2ℓ−1, by the fact that the two values γ (vi)+γ (vj) and d({vi, vj}) have the
ame parity, then γ (vi)+ γ (vj) ⩽ d({vi, vj}). Since γ (vi)+ γ (vj) ⩾ 0 and γ (vi)+ γ (vj) ⩽ 2ℓ, we have
γ (vi) + γ (vj) − 2ℓ| ⩽ 2ℓ. As d({vi, vj}) ⩾ 2ℓ − 1, by the parity |γ (vi) + γ (vj) − 2ℓ| ⩽ d({vi, vj}). ⋄

laim 3.3.6. With respect to γ , the only bad set is {v1, v2} (equivalently, {v3, v4}).

roof. We discuss two cases based on the value of γ (v2).

ase 1: If γ (v2) ⩽ 0, then γ (v1) > 0 ⩾ γ (v2) ⩾ γ (v3) ⩾ γ (v4). Since
∑4

i=1 γ (vi) = 0 and
(v1) − γ (v4) ⩽ 2ℓ, we have

0 ⩽ γ (v1) + γ (v4) ⩽ γ (v1) + γ (v3) ⩽
1
2
(γ (v1) + γ (v3)) +

1
2
(γ (v1) + γ (v2))

=
1
2
(γ (v1) − γ (v4)) ⩽ ℓ.

hus {v1, v3} and {v1, v4} are not bad sets and the only possible bad set is {v1, v2}.

ase 2: If γ (v2) > 0, then γ (v1) ⩾ γ (v2) > 0 ⩾ γ (v3) ⩾ γ (v4). We first assume that S = {vi, vj}

atisfies that γ (vi) > 0 and γ (vj) ⩽ 0, i.e., i ∈ {1, 2} and j ∈ {3, 4}. Then

−ℓ ⩽ min
v∈V (G)

{γ (v)} ⩽ γ (vi) + γ (vj) = −

∑
v∈Sc

γ (v) ⩽ − min
v∈V (G)

{γ (v)} ⩽ ℓ.

As G is (ℓ + 1)-edge-connected, such S = {vi, vj} is not a bad set. The only possible bad set is
{v1, v2}. ⋄

It follows from Claim 3.3.6 that γ (v1) + γ (v2) > d({v1, v2}). Moreover, by Claim 3.3.5,
d({v1, v2}) < 2ℓ− 1 (i.e., d({v1, v2}) ⩽ 2ℓ− 2). Since d({v1, v2})+ d({v1, v3})+ d({v1, v4}) = 2e(G) =

6ℓ − 4 > 3(2ℓ − 2), we have either d({v1, v3}) ⩾ 2ℓ − 1 or d({v1, v4}) ⩾ 2ℓ − 1.

• If d({v1, v3}) ⩾ 2ℓ − 1, we define a new γ ′-function as follows:

γ ′(v1) = γ (v1) − 2ℓ, γ ′(v4) = γ (v4) + 2ℓ, and γ ′(vi) = γ (vi) for i ∈ {2, 3}.

Now we know that, with respect to γ ′, {v1, v2} is not a bad set by Claim 3.3.4 and {v1, v3} is
not a bad set by Claim 3.3.5. Meanwhile, as |γ ′(v1) + γ ′(v4)| = |γ (v1) − 2ℓ + γ (v4) + 2ℓ| ⩽
d({v1, v4}), {v1, v4} is not a bad set. By Theorem 2.14 (Hakimi’s orientation theorem), G admits
a γ ′-orientation and thus a (2ℓ, β)-orientation, a contradiction.

• If d({v1, v4}) ⩾ 2ℓ − 1, similarly we define

γ ′(v1) = γ (v1) − 2ℓ, γ ′(v3) = γ (v3) + 2ℓ, and γ ′(vi) = γ (vi) for {2, 4}.

Thus, with respect to γ ′, {v1, v2} is not a bad set by Claim 3.3.4 and {v1, v4} is not a bad set
by Claim 3.3.5. Meanwhile, |γ ′(v1) + γ ′(v3)| = |γ (v1) − 2ℓ + γ (v3) + 2ℓ| ⩽ d({v1, v3}), thus
{v1, v3} is not a bad set. It leads to a contradiction by Theorem 2.14.

In conclusion, G has no bad set with respect to γ ′, thus by Hakimi’s orientation theorem, G is
strongly Zℓ-connected, a contradiction. It completes the proof of the lemma. □

We remark that the condition e(G) ⩾ 3ℓ − 2 in Lemma 3.3 is somehow necessary as (2t − 1)K4
(a multi-K4 with µ(uv) = 2t − 1 for each pair uv) is not strongly Z4t−1-connected. Applying
Nash-Williams–Tutte Theorem (Theorem 2.12) and Lemma 3.3, we have the next result.
12
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Lemma 3.4. If G is a graph with v(G) = 4, e(G) ⩾ 3ℓ − 2, µ(G) ⩽ ℓ − 2, and δ(G) ⩾ ℓ − 1, then G is
strongly Zℓ-connected.

Proof. For any graph G on four vertices satisfying µ(G) ⩽ ℓ − 2 and δ(G) ⩾ ℓ − 1, it can be
eadily verified that G satisfies the conditions in the Nash-Williams–Tutte Theorem and thus G has
− 1 edge-disjoint spanning trees. Since e(G) ⩾ 3ℓ − 2, Lemma 3.3 implies that G is strongly
ℓ-connected. □

4. Strongly Z2k-connected graphs

In this section, we will prove a stronger result (Theorem 4.6 below), which implies Theorem 1.8,
using the notion of weight functions introduced in [3].

Given a partition P = {P1, P2, . . . , Pt} of V (G) and a positive integer k, we define the k-weight
unction of P as follows:

ωk
G(P) =

t∑
i=1

d(Pi) − (6k − 4)t + (12k − 12) (5)

nd ωk(G) = minP{ωk
G(P)}.

emma 4.1. Let k be a positive integer. Given a graph G and a connected subgraph H of G, ωk(G/H) ⩾
k(G).

roof. Let G′
= G/H . Assume that P ′

0 is a partition of V (G′) satisfying that ωk(G′) = ωk
G′ (P ′

0)
and let P0 be the partition of V (G) corresponding to the partition P ′

0 of V (G′). We have that
ωk(G′) = ωk

G′ (P ′

0) = ωk
G(P0) ⩾ minP{ωk

G(P)} = ωk(G). □

Proposition 4.2. Let P = {P1, P2, . . . , Pt} be a partition of V (G) with |P1| ⩾ 2, let H = G[P1] and let
Q = {Q1,Q2, . . . ,Qs} be a partition of V (H). Then the partition Q ∪ (P \ {P1}) of V (G) satisfies that

ωk
G(Q ∪ (P \ {P1})) = ωk

G(P) + ωk
H (Q) − (6k − 8).

Proof. By the definition, Q ∪ (P \ {P1}) is a refinement of P , thus

ωk
G(Q ∪ (P \ {P1})) =

s∑
i=1

dG(Qi) +

t∑
i=2

dG(Pi) − (6k − 4)(t − 1 + s) + (12k − 12)

=

s∑
i=1

dH (Qi) + dG(P1) +

t∑
i=2

dG(Pi) − (6k − 4)(t − 1 + s) + (12k − 12)

= [

s∑
i=1

dH (Qi) − (6k − 4)s + (12k − 12)]

+ [

t∑
i=1

dG(Pi) − (6k − 4)t + (12k − 12)] + (6k − 4) − (12k − 12)

= ωk
H (Q) + ωk

G(P) − (6k − 8). □

efinition 4.3. Let k be an integer with k ⩾ 2. Let

Nk := {αK2 : 2 ⩽ α ⩽ 2k − 2} ∪ {Ta,b,c : 3k − 1 ⩽ a + b + c ⩽ 4k − 3, δ(Ta,b,c) ⩾ 2k − 1}.

graph G has a troublesome partition with respect to strong Z2k-connectivity if there is a partition
of V (G) such that G/P ∈ Nk.

Note that each graph in N is not strongly Z -connected.
k 2k

13
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Observation 4.4. For αK2, Ta,b,c ∈ Nk, ωk(αK2) ⩽ 4k − 8 and ωk(Ta,b,c) ⩽ 2k − 6.

Let Sk := {(2k − 1)K2} ∪ {Ta,b,c : a + b + c = 4k − 2, δ(Ta,b,c) ⩾ 2k − 1}. The next result follows
from Lemmas 2.5 and 3.1 when ℓ = 2k.

Proposition 4.5. Each graph in Sk is strongly Z2k-connected.

Based on the notions of weight functions and troublesome partitions, we state the main theorem
as follows.

Theorem 4.6. Given a planar graph G and an integer k with 2 ⩽ k ⩽ 4, if ωk(G) ⩾ 0, then either G is
strongly Z2k-connected or G has a troublesome partition.

Next we use Theorem 4.6 to prove the following result (Theorem 4.7), which implies the main
theorem (Theorem 1.8). The detailed proof of Theorem 4.6 is organized as follows: in Section 4.1, we
provide some forbidden configurations in a minimum counterexample to the theorem for general k,
and in Sections 4.2, 4.3, and 4.4, we prove that for k = 2, 3, 4 the minimum counterexample must
contain one element from the forbidden configuration set and obtain a contradiction.

Theorem 4.7. Given an integer k with 2 ⩽ k ⩽ 4, let G be a planar graph and x be a vertex of G.
Assume that 2k− 1 ⩽ dG(x) ⩽ 8k− 5 and except [{x}, V (G) \ {x}] every other cut [X, X c

] for X ⊆ V (G)
has size at least 6k − 4. Then both G − x and G are strongly Z2k-connected.

Proof. By Lemma 2.5, this theorem trivially holds when |V (G)| = 2, and so assume |V (G)| ≥ 3. Let
H = G − x. Note that |V (H)| ⩾ 2. Moreover, H is connected. Assume not and let H1 and H2 denote
two components of H . Since |[V (H1), V (H1)c]| ⩾ 6k − 4 and |[V (H2), V (H2)c]| ⩾ 6k − 4, we have
dG(x) ⩾ 12k − 8, contradicting the assumption that dG(x) ⩽ 8k − 5.

Let P = {P1, . . . , Pt} be an arbitrary partition of V (H). Note that dG(Pi) ⩾ 6k − 4 for each
i ∈ {1, . . . , t} and dG(x) ⩽ 8k − 5. We have that

ωk
H (P) =

t∑
i=1

dH (Pi)−(6k−4)t+(12k−12) =

t∑
i=1

dG(Pi)−dG(x)−(6k−4)t+(12k−12) ⩾ 4k−7.

It implies that ωk(H) ⩾ 4k−7 ⩾ 0. Since by Observation 4.4 each graph of Nk has its weight value at
most 4k − 8, H cannot have a troublesome partition. By Theorem 4.6, H is strongly Z2k-connected.

Moreover, note that G/H is αK2 where α ⩾ 2k − 1, which is strongly Z2k-connected. By
Lemma 2.7, G is also strongly Z2k-connected. □

Let G be a (6k−4)-edge-connected planar graph. If G contains a vertex of degree at most 8k−5,
then we can directly apply Theorem 4.7 to conclude that G is strongly Z2k-connected. Otherwise,
we may add one vertex x and add 2k − 1 edges connecting it to the vertices of V (G) (preserving
the planarity). Note that now the resulting graph G + x satisfies the conditions in Theorem 4.7,
and thus G is strongly Z2k-connected. Hence, Theorem 1.8 (restated below) is a particular case of
Theorem 4.7.

Theorem 1.8. Given an integer k with 2 ⩽ k ⩽ 4, every (6k − 4)-edge-connected planar graph is
strongly Z2k-connected.

4.1. Properties of the minimum counterexample to Theorem 4.6

In the sequel, let G be a minimum counterexample to Theorem 4.6 with respect to v(G) + e(G).
That is to say, ωk(G) ⩾ 0, G is not strongly Z2k-connected and for any partition P of V (G), G/P ̸∈ Nk.
Moreover, by the minimality of G, for any planar graph H such that v(H) + e(H) < v(G) + e(G)
and ωk(H) ⩾ 0, either H is strongly Z2k-connected or there exists a partition P of V (H) such that
H/P ∈ N .
k

14
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Lemma 4.8. Let k be an integer with k ⩾ 2. Let H be a planar graph such that v(H)+e(H) < v(G)+e(G)
nd ωk(H) ⩾ 0. The following statements hold.

(1) If ωk
H (P) ⩾ 4k−7 for any nontrivial partition P of V (H), then either H is strongly Z2k-connected

or H ∈ Nk.
(2) If ωk(H) ⩾ 4k − 7, then H is strongly Z2k-connected.
(3) Assume that H is (2k − 1)-edge-connected and let k ⩾ 3. If ωk

H (P) ⩾ 2k − 5 for any nontrivial
partition P of V (H), then either H is strongly Z2k-connected or H ∈ Nk \ {αK2 : 2 ⩽ α ⩽ 2k−2}.

roof. (1). Since H satisfies that e(H) + v(H) < e(G) + v(G) and ωk(H) ⩾ 0, either H is strongly
2k-connected or H has a troublesome partition. Assuming that H has a partition P0 such that
/P0 ∈ Nk, as ωk

H (P) ⩾ 4k− 7 for any nontrivial partition P , we obtain that P0 is a trivial partition
nd H ∈ Nk.
(2). In this case, for any partition P of V (H) (including the trivial partition), ωk

H (P) ⩾ 4k−7. Thus
/∈ Nk and it follows from Case (1) that H is strongly Z2k-connected.
(3). Since H is (2k − 1)-edge-connected, we have H /∈ {αK2 : 2 ⩽ α ⩽ 2k − 2}. Since each

value of the weight function of graphs in Nk \ {αK2 : 2 ⩽ α ⩽ 2k − 2} is less than 2k − 6,
and ωk

H (P) ⩾ 2k − 5 for any nontrivial partition P of V (H), we know that either H is strongly
2k-connected or H ∈ Nk \ {αK2 : 2 ⩽ α ⩽ 2k − 2}. □

We provide some structural properties of G in the following.

emma 4.9. The graph G contains no strongly Z2k-connected subgraph H with v(H) ⩾ 2.

roof. Assume that there is a strongly Z2k-connected subgraph H of G with v(H) ⩾ 2. Let G′
= G/H .

y Lemma 4.1, ωk(G′) ⩾ ωk(G) ⩾ 0. Noting that v(G′) + e(G′) < v(G) + e(G), by the minimality
f G, we know either G′ is strongly Z2k-connected or it has a troublesome partition. Noting that
has no troublesome partition, by Observation 2.11 we have G′/P ′ /∈ Nk for any partition P ′

f V (G′). Therefore, G′ is strongly Z2k-connected. By Lemma 2.7 G is strongly Z2k-connected, a
ontradiction. □

emma 4.10. Let P = {P1, P2, . . . , Pt} be a partition of V (G) and k be an integer with k ⩾ 2.

(1) If P is nontrivial, then ωk
G(P) ⩾ 2k.

(2) If P is normal, then ωk
G(P) ⩾ 4k − 3.

(3) If |P1| ⩾ 2 and |P2| ⩾ 3, then ωk
G(P) ⩾ 6k − 3.

roof. Recall that for a subgraph H of G and a partition Q of V (H), by Proposition 4.2, we have that

ωk
H (Q) = ωk

G(Q ∪ (P \ {P1})) − ωk
G(P) + (6k − 8). (6)

For (1), assume to the contrary that ωk
G(P) ⩽ 2k−1 for a nontrivial partition P . As P is nontrivial,

ithout loss of generality, we may assume that |P1| ⩾ 2. Let H = G[P1]. For any partition Q of V (H),
ince ωk(G) ⩾ 0 and thus ωk

G(Q ∪ (P \ {P1})) ⩾ 0, by Formula (6) ωk
H (Q) ⩾ 0 − (2k − 1) + (6k − 8) ⩾

k − 7. Therefore, ωk(H) ⩾ 4k − 7 and H is strongly Z2k-connected by Lemma 4.8 (2), which is a
ontradiction.
For (2), let P be a normal partition of V (G) and assume to the contrary that ωk

G(P) ⩽ 4k− 4. We
onsider the following two possibilities.

ase (a): Assume that P has two nontrivial parts {P1, P2} with |P1| ⩾ 2 and |P2| ⩾ 2. Let H = G[P1].
or any partition Q of V (H), Q∪P \ {P1} is a nontrivial partition of V (G), thus ωk

G(Q∪P \ {P1}) ⩾ 2k
y Case (1). By Formula (6), ωk

H (Q) ⩾ 2k − (4k − 4) + (6k − 8) = 4k − 4. Therefore, ωk(H) ⩾ 4k − 4
nd H is strongly Z2k-connected by Lemma 4.8 (2), a contradiction.

ase (b): Without loss of generality, assume that P contains a unique nontrivial part P1 with |P1| ⩾
. Let H = G[P ] andQ be a partition of P . IfQ is a trivial partition, noting that ωk (Q∪(P\{P })) ⩾ 0,
1 1 G 1

15
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then by Formula (6) ωk
H (Q) ⩾ 0 − (4k − 4) + (6k − 8) = 2k − 4; If Q is a nontrivial partition, then

ωk
G(Q∪ (P \ {P1})) ⩾ 2k by Case (1), thus by Formula (6) ωk

H (Q) ⩾ 2k− (4k− 4)+ (6k− 8) = 4k− 4.
e conclude that for any nontrivial partition Q of H , ωk

H (Q) ⩾ 4k−4 and ωk(H) ⩾ 2k−4 ⩾ 0. Since
H| = |P1| ⩾ 3 and by Observation 4.4, H ̸∈ Nk. Thus, H is strongly Z2k-connected by Lemma 4.8 (1),
contradiction.
For (3), assume to the contrary that ωk

G(P) ⩽ 6k − 4. Let H = G[P1]. Note that for any
artition Q of V (H), Q ∪ (P \ {P1}) is a normal partition of V (G). By Case (2) and Formula (6),
k
H (Q) ⩾ (4k − 3) − (6k − 4) + (6k − 8) = 4k − 7 and thus ωk(H) ⩾ 4k − 7. By Lemma 4.8 (2), H is
trongly Z2k-connected, a contradiction. □

Next, we show that the minimum counterexample G must have at least five vertices.

emma 4.11. We have v(G) ⩾ 5.

roof. Assume to the contrary that v(G) ⩽ 4. It is trivial that v(G) ̸= 1. That v(G) ̸= 2 follows from
he fact that a graph on two vertices is either in Nk or strongly Z2k-connected.

Assume that v(G) = 3 and V (G) = {x, y, z}. As ωk(G) ⩾ 0, based on the trivial partition of V (G), we
have that 2e(G)−(6k−4)×3+(12k−12) ⩾ 0 and thus e(G) ⩾ 3k. We first claim that G = Ta,b,c . If not,
without loss of generality, we may assume that G is a path xyz. Since G/P ̸∈ {αK2 : 2 ⩽ α ⩽ 2k−2}
for any partition P of V (G), min{µ(xy), µ(yz)} ⩾ 2k − 1. Thus G contains (2k − 1)K2 as a subgraph,
contradicting Lemma 4.9. Since G = Ta,b,c has no troublesome partition (in particular, for the trivial
partition P0 of V (G), G/P0 ̸∈ {Ta,b,c : 3k − 1 ⩽ a + b + c ⩽ 4k − 3}), a + b + c ⩾ 4k − 2. Moreover,
as for any subset X ⊂ V (G) with |X | = 2, G/X ̸∈ {αK2 : 2 ⩽ α ⩽ 2k − 2}, δ(G) ⩾ 2k − 1. Such Ta,b,c
is in Sk, a contradiction.

Now we assume that v(G) = 4. Since ωk(G) ⩾ 0, we have e(G) ⩾ 6k−2. Moreover, by Lemmas 2.5
and 4.9, G has no copy of (2k − 1)K2 and thus µ(G) ⩽ 2k − 2. We claim that δ(G) ⩾ 2k − 1. Assume
not, and let v be the vertex with d(v) = δ(G) ⩽ 2k − 2 and H be the graph obtained from G by
deleting v. Since H is a subgraph of G, µ(H) ⩽ µ(G) ⩽ 2k − 2. As H has three vertices and at
least (6k − 2) − (2k − 2) = 4k edges, H is a multi-triangle. Moreover, δ(H) + µ(H) ⩾ e(H) ⩾ 4k,
i.e., δ(H) ⩾ 2k + 2. By Lemma 3.1, H is a strongly Z2k-connected graph, contradicting Lemma 4.9.
This completes the proof of the claim. Since δ(G) ⩾ 2k−1, G satisfies all the conditions in Lemma 3.4
and thus it is strongly Z2k-connected, a contradiction. □

Lemma 4.12. G contains no T1,1,2k−2 as a subgraph.

Proof. Let T1,1,2k−2 be a multi-triangle with the vertex set {x, y, z} satisfying that d(x) = 2 and
d(y) = d(z) = 2k − 1. Assume to the contrary that G contains T1,1,2k−2 as a subgraph. We lift the
edge pair yx, xz to obtain a new edge yz, then contract the subgraph (2k − 1)K2 between y and z,
and denote the resulting graph by G′.

For the trivial partition P ′ of V (G′), we have ωk
G′ (P ′) ⩾ ωk(G)−2×2k+(6k−4) ⩾ 0−4k+(6k−4) =

2k− 4. For any nontrivial partition P ′ of V (G′), there is a normal partition P of V (G) corresponding
to P ′ of V (G′). By Lemma 4.10 (2), ωk

G(P) ⩾ 4k − 3. Recall that the vertices y and z are in the
same part of P . Observe that xy and xz are the edges which may be counted in ωk

G(P) but not in
ωk

G′ (P ′). Hence, ωk
G′ (P ′) ⩾ ωk

G(P) − 2 × 2 = 4k − 7. Altogether, ωk(G′) ⩾ min{2k − 4, 4k − 7} ⩾ 0.
By Lemma 4.8 (1), G′ is either strongly Z2k-connected or in Nk. The latter case is impossible since
v(G′) = v(G)− 1 ⩾ 4 by Lemma 4.11. It then follows from Proposition 2.8 (1) that G is also strongly
Z2k-connected, a contradiction. □

Using Lemmas 4.10 and 4.11, we give a lower bound on the edge-connectivity of the minimum
counterexample G in the next lemma.

Lemma 4.13. The graph G is (2k + 1)-edge-connected. Moreover, if [X, X c
] is an edge-cut of G with

|X | ⩾ 2 and |X c
| ⩾ 3, then d(X) ⩾ 3k + 1.
16
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Proof. For any X ⊂ V (G), let P = {X, X c
} be a partition of V (G). Note that [X, X c

] is an edge-cut of G.
Since v(G) ⩾ 5 by Lemma 4.11, such a partition P is always a normal partition. By Lemma 4.10 (2),
ωk

G(P) ⩾ 4k − 3. It follows from the definition that ωk
G(P) = 2d(X) − (6k − 4) × 2 + (12k − 12) ⩾

k − 3, solving which we have that d(X) ⩾ 2k +
1
2 and thus d(X) ⩾ 2k + 1. Hence, G is

2k + 1)-edge-connected.
For the moreover part, let P = {X, X c

} with |X | ⩾ 2 and |X c
| ⩾ 3. By Lemma 4.10 (3),

ωk
G(P) ⩾ 6k − 3. Again by solving ωk

G(P) = 2d(X) − (6k − 4) × 2 + 12k − 12 ⩾ 6k − 3, we have that
d(X) ⩾ 3k +

1
2 and thus d(X) ⩾ 3k + 1. □

To obtain more reducible configurations, from now on we assume that k ⩾ 3.

emma 4.14. G contains no Q1,1,1,2k−2 as a subgraph.

roof. Let Q1,1,1,2k−2 be a multi-cycle with vertices x, y, z, and w satisfying that d(y) = d(z) = 2
and d(x) = d(w) = 2k−1. Suppose to the contrary that G contains Q1,1,1,2k−2. We lift an edge triple
xy, yz, zw to obtain a new (parallel) edge xw, and then contract the resulting subgraph (2k − 1)K2.
The resulting graph is denoted by G′. By Lemma 4.13, dG′ (y) ⩾ 2k − 1 and dG′ (z) ⩾ 2k − 1, and by
the moreover part of Lemma 4.13, dG′ (u∗) ⩾ (3k + 1) − 2 ⩾ 3k − 1 ⩾ 2k − 1 where u∗ is the new
vertex of V (G′) obtained by the contraction. Hence, G′ is (2k − 1)-edge-connected.

For the trivial partition P ′

0 of V (G′), we have that ωk
G′ (P ′

0) ⩾ ωk(G) − 2 × (2k + 1) + 6k − 4 ⩾

2k − 6 ⩾ 0. Similar to the proof of Lemma 4.12, for any nontrivial partition P ′ of V (G′), ωk
G′ (P ′) ⩾

ωk
G(P) − 2 × 3 ⩾ 4k − 3 − 6 = 4k − 9 ⩾ 2k − 5. Since v(G′) ⩾ 4 by Lemma 4.11, G′ /∈ Nk. So G′ is

strongly Z2k-connected by Lemma 4.8 (3). Hence, G is strongly Z2k-connected by Proposition 2.8 (1),
which is a contradiction. □

We now improve the edge-connectivity of G and then obtain another reducible configuration.

Lemma 4.15. The minimum degree of G is at least 2k + 3. Moreover, G is (2k + 3)-edge-connected.

Proof. Assume to the contrary that δ(G) ⩽ 2k+ 2. As G is (2k+ 1)-edge-connected by Lemma 4.13,
δ(G) ∈ {2k + 1, 2k + 2}. Thus there is a vertex, say z, whose degree is either 2k + 1 or 2k + 2,
and assume that there are two edges xz and zy incident with z. We lift the edge pair xz, zy and
then delete the vertex z. The resulting graph is denoted by G′. Since G has no copy of T1,1,2k−2 by
Lemma 4.12, µG′ (xy) ⩽ 2k − 2. Towards a contradiction, by Proposition 2.8 (2), it suffices to show
that G′ is strongly Z2k-connected.

For the trivial partition P ′

0 of V (G′), we know that ωk
G′ (P ′

0) ⩾ ωk(G)−2× (2k+2−1)+ (6k−4) ⩾
2k − 6 ⩾ 0. For the almost trivial partition P ′

1 = {P ′

1, P
′

2, . . . , P
′
t} of V (G′) with P ′

1 = {x, y} (noting
that t = v(G′)− 1), as µG′ (xy) ⩽ 2k− 2, ωk

G′ (P ′

1) ⩾ ωk
G′ (P ′

0)− 2× (2k− 2)+ 6k− 4 ⩾ 4k− 6. For any
normal partition P ′ of V (G′), noting that P ′

∪ {z} is a normal partition of V (G), by Lemma 4.10 (2),
ωk

G′ (P ′) ⩾ ωk
G(P

′
∪ {z}) − 2 × (2k + 2) + 6k − 4 ⩾ 6k − 11. Hence, for any nontrivial partition P of

V (G′), ωk
G′ (P) ⩾ 4k − 6. By Lemma 4.11, v(G′) = v(G) − 1 ⩾ 4, so G′ /∈ Nk. Applying Lemma 4.8 (1),

we conclude that G′ is strongly Z2k-connected. We complete the proof of the first part.
Moreover, since v(G) ⩾ 5, for any edge-cut [X, X c

] of G with |X | ⩾ 2, by the moreover part of
Lemma 4.13, d(X) ⩾ 3k + 1 ⩾ 2k + 3 (as k ⩾ 3). Together with the fact that δ(G) ⩾ 2k + 3, G is
(2k + 3)-edge-connected. □

Lemma 4.16. G contains no T2,2,2k−3 as a subgraph.

Proof. Let T2,2,2k−3 be a multi-triangle with vertices x, y, and z satisfying that d(x) = 4 and
d(y) = d(z) = 2k − 1. Assume that G contains T2,2,2k−3 as a subgraph. We lift two edge pairs at
x to obtain two new parallel edges connecting y and z, and contract the resulting (2k − 1)K2. The
resulting graph is denoted by G′. By Lemma 4.15, dG′ (x) ⩾ 2k − 1, and by the moreover part of
Lemma 4.13, dG′ (u∗) ⩾ (3k + 1) − 4 ⩾ 3k − 3 ⩾ 2k − 1 where u∗ is the new vertex obtained by the

′
contraction. Hence, G is (2k − 1)-edge-connected.

17
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The trivial partition P ′

0 of V (G′) satisfies ωk
G′ (P ′

0) ⩾ ωk(G) − 2 × (2k + 1) + 6k − 4 ⩾ 2k − 6 ⩾ 0.
ince for any normal partition P of V (G), ωk

G(P) ⩾ 4k−3 by Lemma 4.10 (2), any nontrivial partition
′ of V (G′) satisfies that ωk

G′ (P ′) ⩾ ωk
G(P) − 2 × 4 ⩾ 4k − 11 ⩾ 2k − 5 as k ⩾ 3. By Lemma 4.11,

(G′) ⩾ 4, thus G′ /∈ Nk. It follows from Lemma 4.8 (3) that G′ is strongly Z2k-connected, so G is by
roposition 2.8 (1), a contradiction. □

.2. Strongly Z4-connected graphs

In this subsection, for k = 2, we consider the weight function ω2
G(P) =

∑t
i=1 d(Pi)− 8t + 12 and

2(G) = minP{ω2
G(P)}. We shall prove the following claim:

A planar graph G with ω2(G) ⩾ 0 either is strongly Z4-connected or has a troublesome partition.
By Proposition 4.5 together with Lemma 4.9, and Lemma 4.12, we know that a minimum

ounterexample to this claim contains no configuration from F2 = {3K2, T1,1,2}. Since a graph G
ith ω2(G) ⩾ 0 satisfies e(G) ⩾ 4v(G) − 6, to this end, it suffices to prove the following lemma.

emma 4.17. Given a planar graph G with e(G) ⩾ 4v(G) − 6, if G has no troublesome partition, then
contains at least one configuration of F2 = {3K2, T1,1,2}.

roof. Assume that G contains no configurations of F2. As e(G) ⩾ 4v(G)−6 (i.e., 2e(G)−8v(G)+12 ⩾
), by Euler’s formula that v(G)+ f (G)−e(G) = 2, we have that 2e(G)−8×

(
2− f (G)+e(G)

)
+12 ⩾ 0,

hus ∑
f∈F (G)

ℓ(f ) = 2e(G) ⩽
8
3
f (G) −

4
3
.

e assign to each face f an initial charge c(f ) = ℓ(f ), and thus the total charge is strictly smaller
han 8

3 f (G). We then apply the following discharging rule.

Rule. Each 2-face receives 1
3 from each of its weakly adjacent 3+-faces.

We shall prove that each face ends with a charge at least 8
3 after discharging, which is a

ontradiction. Every 2-face receives 1
3 from each of its two weakly adjacent 3+-faces, thus it has

charge at least 2+
2
3 ⩾ 8

3 . For a 3-face f (viewed as the inner face of Ta,b,c), since G does not contain
1,1,2, we have a+ b+ c ⩽ 3 and hence, f always ends with a charge of at least 3. Since G contains
o 3K2, after the discharging, each 4+-face f has charge c ′(f ) ⩾ ℓ(f )− 1

3ℓ(f ) =
2
3ℓ(f ) ⩾

8
3 . Therefore,

very face ends with a charge at least 8
3 and this completes the proof. □

.3. Strongly Z6-connected graphs

In this subsection, for k = 3, we consider the weight function ω3
G(P) =

∑t
i=1 d(Pi) − 14t + 24

and ω3(G) = minP{ω3
G(P)}. Recall that N3 = {αK2 : 2 ⩽ α ⩽ 4} ∪ {Ta,b,c : a + b + c ∈ {8, 9}} and

S3 = {5K2, T2,4,4, T3,3,4}. We shall prove the following claim:
Given a planar graph G, if ω3(G) ⩾ 0, then either G is strongly Z6-connected or G has a troublesome

partition.
By Proposition 4.5 together with Lemma 4.9, and Lemmas 4.12, 4.14, and 4.16, we obtain the

forbidden configurations set F3 = {5K2, T1,1,4, T2,2,3,Q1,1,1,4} of the minimum counterexample G to
the above claim. Since a graph G with ω3(G) ⩾ 0 has e(G) ⩾ 7v(G) − 12, similarly, we shall prove
emma 4.18 to finish the proof of the above claim.

emma 4.18. Given a planar graph G with e(G) ⩾ 7v(G) − 12, if G has no troublesome partition, then
contains at least one configuration of F3 = {5K2, T1,1,4, T2,2,3,Q1,1,1,4}.

Proof. Assume that G is a counterexample of this lemma. As e(G) ⩾ 7v(G)−12 (i.e., 2e(G)−14v(G)+
24 ⩾ 0), by Euler’s formula, we have 2e(G) − 14 ×

(
2 − f (G) + e(G)

)
+ 24 ⩾ 0, thus∑

ℓ(f ) = 2e(G) ⩽
7
3
f (G) −

2
3
.

f∈F (G)

18
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Fig. 2. The graphs T o
1,1,6 , Q

o
1,1,1,6 , and T o

2,2,5 .

We assign to each face f the initial charge ℓ(f ). The total charge is strictly smaller than 7
3 f (G).

e then apply the following discharging rule.

ule. Each 2-face receives 1
6 from each of its weakly adjacent 3+-faces.

As every 2-face has exactly two weakly adjacent 3+-faces, its charge is increased to 7
3 . Since G

as no 5K2, each face f has at most 3ℓ(f ) weakly adjacent 2-faces, and moreover, when ℓ(f ) ⩾ 5,
e have that c ′(f ) ⩾ ℓ(f ) − 3ℓ(f ) ×

1
6 ⩾ 5

2 > 7
3 . The remaining cases are 3-faces and 4-faces. Since

contains no T1,1,4 and T2,2,3, every 3-face f has at most 4 weakly adjacent 2-faces. Hence, f ends
ith a charge c ′(f ) ⩾ 3 − 4 ×

1
6 =

7
3 . Since G contains no Q1,1,1,4, every 4-face f (viewed as the

inner face of Qa,b,c,d) has at most 8 weakly adjacent 2-faces and thus c ′(f ) ⩾ 4 − 8 ×
1
6 =

8
3 . Every

ace ends with a charge at least 7
3 , a contradiction. □

.4. Strongly Z8-connected graphs

For k = 4, we consider the weight function ω4
G(P) =

∑t
i=1 d(Pi) − 20t + 36 and ω4(G) =

inP{ω4
G(P)}. Recall that N4 = {αK2 : 2 ⩽ α ⩽ 6} ∪ {Ta,b,c : a + b + c ∈ {11, 12, 13}} and a

graph G has a troublesome partition with respect to strong Z8-connectivity if it has a partition P
such that G/P ∈ N4. Each graph of S4 = {7K2, T2,6,6, T3,5,6, T4,4,6, T4,5,5} is strongly Z8-connected.
We shall conclude the following claim:

Given a planar graph G, if ω4(G) ⩾ 0, then either G is strongly Z8-connected or G has a troublesome
partition.

To this end, we need first to show that graphs T o
1,1,6, T

o
2,2,5 and Q o

1,1,1,6, depicted in Fig. 2, are
forbidden configurations in the minimum counterexample G of the above claim.

Lemma 4.19. G contains no T o
1,1,6 as a subgraph.

Proof. Let T o
1,1,6 be a multi-graph with the vertex set {x, y, w, z} satisfying that d(x) = d(y) = 7

and d(w) = d(z) = 2, and see Fig. 2(a). Suppose that G contains T o
1,1,6 as a subgraph. We lift two

edge pairs xw, wy and xz, zy to obtain two new edges connecting x and y, contract the resulting
7K2, and denote the final graph by G′. Clearly, G′ is 9-edge-connected by Lemma 4.15 and the
moreover part of Lemma 4.13. Observe that G′ /∈ N4 as v(G′) ⩾ 4. For the trivial partition P ′

0
of V (G′), we have ω4

G′ (P ′

0) ⩾ ω4(G) − 2 × 9 + 20 ⩾ 2. For any nontrivial partition P ′ of V (G′),
ω4

G′ (P ′) ⩾ ω4
G(P) − 2 × 4 ⩾ 13 − 8 = 5, where ω4

G(P) ⩾ 13 follows from Lemma 4.10 (2). Thus by
Lemma 4.8 (3), G′ is strongly Z8-connected, so G is by Proposition 2.8 (1), a contradiction. □

Lemma 4.20. G contains no Q o as a subgraph.
1,1,1,6

19
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Proof. Let Q o
1,1,1,6 be a multi-graph with vertices x, y, w, z, u satisfying d(x) = d(y) = 7 and

d(u) = d(w) = d(z) = 2, and see Fig. 2(b). Assume that G contains Q o
1,1,1,6. Similarly, we first lift an

edge pair xu, yu and also lift a 2-path xw, wz, zy to become two new parallel edges connecting x and
y. We then contract the newly obtained 7K2 and denote the resulting graph by G′. Note that G′ is
9-edge-connected and G′ /∈ N4. For the trivial partition P ′

0 of V (G′), ω4
G′ (P ′

0) ⩾ ω4(G)−2×10+20 ⩾ 0,
and for any nontrivial partition P ′ of V (G′), ω4

G′ (P ′) ⩾ ω4
G(P)− 2× 5 ⩾ 13− 10 = 3. Therefore, G′ is

strongly Z8-connected by Lemma 4.8 (3) and G is also strongly Z8-connected by Proposition 2.8 (1),
a contradiction. □

Next, to obtain the last forbidden configuration depicted in Fig. 2(c), we need to improve the
bound of the weight function of normal partitions of V (G).

Lemma 4.21. If P is a normal partition of V (G), then ω4
G(P) ⩾ 15.

Proof. Let P = {P1, P2, . . . , Ps} be a normal partition of V (G) with |P1| ⩾ 2 and assume to the
contrary that ω4

G(P) ⩽ 14. Let H = G[P1] and let Q be a partition of V (H). By Proposition 4.2,
ω4

H (Q) = ω4
G(Q ∪ P \ {P1}) − ω4

G(P) + 16 ⩾ ω4
G(Q ∪ P \ {P1}) − 14 + 16 ⩾ ω4

G(Q ∪ P \ {P1}) + 2. If
for any partition Q of V (H), Q ∪ P \ {P1} is a nontrivial partition of V (G), then by Lemma 4.10 (1),
ω4(H) ⩾ 8 + 2 = 10. By Lemma 4.8 (2), H is strongly Z8-connected, a contradiction to Lemma 4.9.
Thus we assume that there is a partition Q of V (H) such that Q ∪ P \ {P1} is the trivial partition
f V (G) and thus ω4(H) ⩾ 2. In this case, since P is a normal partition, we have |P1| ⩾ 3,

so H /∈ {αK2 : 2 ⩽ α ⩽ 6}. Moreover, since ω4(Ta,b,c) < 2 when a + b + c ∈ {11, 12},
H /∈ {Ta,b,c : 11 ⩽ a + b + c ⩽ 12}. By Lemmas 4.12 and 4.16, G has no copy of T1,1,6 and T2,2,5, so
H /∈ {Ta,b,c : a + b + c = 13}. Thus, we conclude that H /∈ N4. Note that ω4

H (Q
′) ⩾ 10 > 9 for any

nontrivial partition Q′ of V (H), so H is strongly Z8-connected by Lemma 4.8 (1), again contradicting
Lemma 4.9. □

Lemma 4.22. G contains no T o
2,2,5 as a subgraph.

Proof. Let T o
2,2,5 be a multi-graph with vertices x, y, w, z satisfying that d(x) = d(y) = 7, d(w) = 2

and d(z) = 4, and see Fig. 2(c). Assume G contains T o
2,2,5. We lift two edge pairs at z and an edge pair

xw, wy to obtain three new parallel edges connecting x and y, then contract the resulting subgraph
7K2 and denote the final graph by G′. Since G is 11-edge-connected by Lemma 4.15, by the moreover
part of Lemma 4.13, G′ is 7-edge-connected.

For the trivial partition P ′

0 of V (G′), ω4
G′ (P ′

0) ⩾ ω4(G)−2×10+20 ⩾ 0. For any nontrivial partition
P ′, there is a partition P of V (G) corresponding to P ′ of V (G′). Note that P is a normal partition and
hus ω4

G(P) ⩾ 15 by Lemma 4.21. We have that ω4
G′ (P ′) ⩾ ω4

G(P)− 2× 6 ⩾ 15− 12 = 3. Again since
(G′) ⩾ 4, G′ /∈ N4. By Lemma 4.8 (3), G′ is strongly Z8-connected, so G is by Proposition 2.8 (1), a
ontradiction. □

By Proposition 4.5 together with Lemma 4.9, and Lemmas 4.12, 4.14, 4.16, 4.19, 4.20, and 4.22,
e have the forbidden configurations set

F4 = {7K2, T1,1,6, T2,2,5,Q1,1,1,6, T o
1,1,6, T

o
2,2,5,Q

o
1,1,1,6}.

imilarly, since a graph G with ω4(G) ⩾ 0 satisfies e(G) ⩾ 10v(G) − 18, we only need to prove the
ollowing lemma to end the proof.

emma 4.23. Given a planar graph G with e(G) ⩾ 10v(G)−18, if G has no troublesome partition, then
contains one configuration of F4.

roof. We assume that G is a counterexample. As e(G) ⩾ 10v(G)− 18, 2e(G)− 20v(G)+ 36 ⩾ 0. By
uler’s formula, we have 2e(G) − 20 ×

(
2 − f (G) + e(G)

)
+ 36 ⩾ 0, then∑

ℓ(f ) = 2e(G) ⩽
20
9

f (G) −
4
9
.

f∈F (G)

20
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We assign to each face f the initial charge ℓ(f ) and the total charge is strictly smaller than 20
9 f (G).

To obtain a contradiction, we redistribute the charge by the following rules:

Rule (i). Each 2-face receives charge 1
9 from each of its weakly adjacent 3+-faces.

Rule (ii). Each 3-face receives charge 1
9 from each of its weakly adjacent 4+-faces.

We shall show each face ends with a charge of at least 20
9 , which is a contradiction.

By Rule (i), every 2-face ends with 2 + 2 ×
1
9 =

20
9 .

We first consider a 5+-face f . Since G contain no 7K2, f has at most 5ℓ(f ) weakly adjacent 2-
aces. Moreover, G contains no copy of T1,1,6. Hence, f sends in total at most 5

9ℓ(f ) to its weakly
djacent 2-faces and 3-faces by Rule (i) and Rule (ii), and thus f ends with a charge of at least
(f ) −

5
9ℓ(f ) =

4
9ℓ(f ) ⩾

20
9 .

We then consider a 4-face f . Since G has no copy of Q1,1,1,6, f has at most 16 weakly adjacent
2-faces. Moreover, since G contains no Q o

1,1,1,6, f sends charge in total at most 16
9 to its weakly

adjacent 2-faces and 3-faces by Rule (i) and Rule (ii). It ends with a charge of at least 20
9 .

Finally, we consider all the 3-faces. Let f be the inner 3-face of the subgraph Ta,b,c (of G). When
a + b + c ⩽ 10, f ends with a charge of at least 3 − 7 ×

1
9 =

20
9 by Rule (i). When a + b + c ⩾ 11,

ince G has no copy of T1,1,6 and T2,2,5, we only need to consider the following three possibilities:
1,5,5, T3,4,4, and T4,4,4.

• If f is the inner face of subgraph T1,5,5, then each face weakly adjacent to f through an edge
of multiplicity 5 is neither a 3-face nor a 4-face by Lemmas 4.19 and 4.20. Thus, f ends with
a charge of at least 3 − (11 − 3) ×

1
9 + 2 ×

1
9 =

21
9 by Rule (i) and Rule (ii).

• If f is the inner face of T3,4,4, then each face weakly adjacent to f through an edge of multiplicity
4 is not a 3-face by Lemma 4.22. So f ends with a charge of at least 3−(11−3)× 1

9 +2×
1
9 =

21
9

by Rule (i) and Rule (ii).
• The last case is when f is the inner face of T4,4,4. Clearly, each face weakly adjacent to f is not

a 3-face by Lemma 4.22, so f ends with a charge of at least 3 − (12 − 3) × 1
9 + 3 ×

1
9 =

21
9 by

Rule (i) and Rule (ii).

We are done. □

. Homomorphisms and circular colorings of signed graphs

In this section, we first give a negative-girth condition for a signed bipartite planar graph to
dmit a homomorphism to C−2k. To prove this result, we need the definition of circular p

q -flow in
igned graphs and the duality theorem between circular flows and circular colorings.

efinition 5.1 ([14]). Given positive integers p and q with p even, a circular p
q -flow in a signed

raph (G, σ ) is a pair (D, f ) where D is an orientation on G and f : E(G) → Z satisfies the following
conditions.

• For each positive edge e, |f (e)| ∈ {q, . . . , p − q};
• For each negative edge e, |f (e)| ∈ {0, . . . , p

2 − q} ∪ {
p
2 + q, . . . , p − 1};

• For each vertex v, ∂Df (v) :=
∑

(u,v)∈D f (uv) −
∑

(v,w)∈D f (vw) = 0.

Note that using Tutte’s theorem3 [30], a signed graph admits a circular p
q -flow if and only if it

admits a modular p
q -flow, i.e., a pair (D, f ) by replacing the last condition of Definition 5.1 with

∂Df (v) ≡ 0 (mod p).

Proposition 5.2 ([14]). For a signed plane graph (G, σ ) and its dual signed graph (G∗, σ ∗), (G, σ ) admits
a circular p

q -coloring if and only if (G∗, σ ∗) admits a circular p
q -flow.

3 If a graph admits a modular k-flow (D, f ), then it admits an integer k-flow (D, f ′) such that f ′(e) ≡ f (e) (mod k) for
every edge e.
21
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When restricted to signed Eulerian graphs, the next theorem provides us with a necessary and
ufficient condition to admit a circular 4k

2k−1 -flow. Let pĜ(v) denote the number of positive edges
ncident with v in the signed graph Ĝ. It is not difficult to observe that by adding 2k to the flow
alue of each positive edge of the signed graph, we may view the obtained flow with only values
−1, +1} (taken modulo 4k) as a special orientation achieving certain boundary 2k · pĜ(v) at each
ertex. Note that the flow value 0 can be ignored because the graph is Eulerian. For the sake of
ompleteness, we provide its proof here.

heorem 5.3 ([14]). Given a positive integer k, a signed Eulerian graph Ĝ admits a circular 4k
2k−1 -flow if

nd only if Ĝ admits a (4k, β)-orientation with β(v) ≡ 2k · pĜ(v) (mod 4k) for each vertex v ∈ V (G).

roof. Since Ĝ is Eulerian, by handshaking lemma β(v) ≡ 2k·pĜ(v) (mod 4k) is a (4k, β)-boundary.
ssume that there is a (4k, β)-orientation D1 on Ĝ. Let D be an orientation on G. We first define a
apping f1 : E(G) → {1, −1} such that f1(e) = 1 if e is oriented in D the same as in D1 and

1(e) = −1 otherwise. Note that ∂Df1(v) = d+

D1
(v) − d−

D1
(v) ≡ β(v) (mod 4k). We define another

apping f2 : E(G) → {0, 2k} satisfying that f2(e) = 2k for each positive edge e and f2(e) = 0 for
ach negative edge e. We have that ∂Df2(v) ≡ 2k·pĜ(v) (mod 4k). Let f = f1+f2. It is easily observed
hat f (e) ∈ {2k − 1, 2k + 1} for each positive edge e and f (e) ∈ {−1, 1} for each negative edge e.
oreover, ∂Df (v) = ∂Df1(v)+∂Df2(v) ≡ β(v)+2k ·pĜ(v) ≡ 0 (mod 4k). Therefore, (D, f ) is a circular
4k

2k−1 -flow in Ĝ.
Conversely, assume that (D, f ) is a circular 4k

2k−1 -flow in Ĝ. We first define a mapping f1 : E(G) →

4k such that f1(e) = 2k for each positive edge e and f1(e) = 0 for each negative edge e. It follows
hat ∂Df1(v) ≡ 2k·pĜ(v) (mod 4k). Then, we define another mapping f2(e) := f1(e)−f (e) for e ∈ E(G)
nd note that for each edge e, f2(e) ∈ {−1, 0, 1}. Let X be the subset of edges e such that f2(e) = 0.
s G is Eulerian, it is easy to see that X = {e ∈ E(G) | f (e) = 0 or f (e) = 2k} and thus every vertex of
[X] is of even-degree. Based on the orientation D and the mapping f2, we define a new orientation
1 on Ĝ as follows: If f2(e) = 1, then e is oriented in D1 the same as in D and if f2(e) = −1, then e is
riented oppositely in D1 and D. For edges in G[X], we orient them at each vertex one-in-one-out.
nder D1, for each vertex v ∈ V (G),

d+

D1
(v) − d−

D1
(v) = ∂Df2(v) = ∂Df1(v) − ∂Df (v) ≡ 2k · pĜ(v) ≡ β(v) (mod 4k).

herefore, D1 is a (4k, β)-orientation with β(v) ≡ 2k · pĜ(v) (mod 4k) for each vertex v ∈ V (G). □

The next corollary follows directly from Theorem 5.3.

orollary 5.4. Let G be an Eulerian graph. If G is strongly Z2k-connected, then for any signature σ on
, (G, σ ) admits a circular 4k

2k−1 -flow.

Combining Theorem 1.8 and Corollary 5.4, we have the following result.

orollary 5.5. Given an integer k with 2 ⩽ k ⩽ 4, every (6k − 4)-edge-connected signed Eulerian
lanar graph admits a circular 4k

2k−1 -flow. Equivalently, every signed bipartite planar graph of girth at
east 6k − 4 is circular 4k

2k−1 -colorable.

We furthermore improve this result by replacing the girth condition with the same negative-
irth condition. We first prove Theorem 5.6, similar to a result of [11]: Given a graph G and its
onnected subgraph H which is strongly Z2k+1-connected, G admits a circular 2k+1

k -flow if and only
f G/H does.

Theorem 5.6. Given an Eulerian graph G and its connected subgraph H, let G′
= G/H. Assume that H

s strongly Z2k-connected. Then for any signature σ on G, (G, σ ) admits a circular 4k
2k−1 -flow if and only

f (G′, σ | ′ ) does.
G

22
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Proof. Let Ĝ := (G, σ ) and Ĝ′
:= (G′, σ |G′ ). Clearly, G′ is also Eulerian. Let w denote the new vertex

btained after the contraction in G′. For any (4k, β)-boundary of G with β(v) ≡ 2k ·pĜ(v) (mod 4k),
he corresponding (4k, β ′)-boundary of G′ (as defined in Observation 2.6) satisfies that

β ′(w) ≡

∑
v∈V (H)

β(v) ≡

∑
v∈V (H)

2k · pĜ(v) = 2k · (pĜ′ (w) + 2|E+

σ (H)|) ≡ 2k · pĜ′ (w) (mod 4k),

where E+
σ (H) denotes the set of positive edges of the signed subgraph of (G, σ ) induced by V (H),

nd β ′(v) ≡ 2k · pĜ′ (v) (mod 4k) for each vertex v ∈ V (G′) \ {w}.
For one direction, by Theorem 5.3, we assume that Ĝ admits a (4k, β)-orientation D with β(v) ≡

2k · pĜ(v) (mod 4k). Let D′ be the restriction of D on Ĝ′. Considering the orientation D′, we have
d+

D′ (w)−d−

D′ (w) ≡
∑

v∈V (H) β(v) ≡ β ′(w) (mod 4k) and d+

D′ (v)−d−

D′ (v) ≡ β(v) = β ′(v) (mod 4k) for
any other vertex v ̸= w. Thus, the orientation D′ is a (4k, β ′)-orientation on Ĝ′ with β ′(v) ≡ 2k·pĜ′ (v)
(mod 4k). Noting that G′ is an Eulerian graph, by Theorem 5.3 Ĝ′ admits a circular 4k

2k−1 -flow.
For the other direction, since G′ is Eulerian and Ĝ′ admits a circular 4k

2k−1 -flow, by Theorem 5.3
the signed graph Ĝ′ has a (4k, β ′)-orientation on Ĝ with β ′(v) ≡ 2k·pĜ′ (v) (mod 4k). As H is strongly
Z2k-connected, by Lemma 2.7 we can obtain a (4k, β)-orientation with β(v) ≡ 2k · pĜ(v) (mod 4k)
n G. Therefore, Ĝ admits a circular 4k

2k−1 -flow by Theorem 5.3. This completes the proof. □

emma 5.7 (Bipartite Folding Lemma [26]). Let Ĝ be a signed bipartite plane graph of negative girth 2k
and let C = v1v2 · · · vt be a facial cycle (of Ĝ) which is not a negative 2k-cycle. Then there is an integer
i ∈ {1, . . . , t} such that the signed graph Ĝ′, obtained from Ĝ by identifying two vertices vi and vi+2
(index is taken modulo t) after a possible switching at one of the two vertices, still has negative girth
2k.

By applying this lemma repeatedly, we get a homomorphic image of Ĝ which is also a signed
bipartite plane graph in which every facial cycle is a negative cycle of length exactly 2k. Now we
are ready to prove Theorems 1.4 and 1.5 together, unified in the following theorem.

Theorem 5.8. Given an integer k with 2 ⩽ k ⩽ 4, every signed bipartite planar graph of negative girth
at least 6k − 4 is circular 4k

2k−1 -colorable, i.e., it admits a homomorphism to C−2k.

roof. By Lemma 5.7, we may assume that (G, σ ) is a minimum counterexample together with a
lanar embedding such that each facial cycle of (G, σ ) is a negative even cycle of length 6k−4. Then
ts dual signed graph (G∗, σ ∗) is a (6k − 4)-regular signed Eulerian plane graph. If G∗ is (6k − 4)-
dge-connected, then we are done by Corollary 5.5. Since (G, σ ) is bipartite and has negative girth at
east 6k−4, every negative even edge-cut of (G∗, σ ∗) is of size at least 6k−4. Thus we may assume
hat (G∗, σ ∗) has a small positive even edge-cut and we choose the edge-cut [X, X c

] with |X | being
inimized among all the possible choices. First observe that |X | ≥ 2 since G∗ is (6k − 4)-regular.
ote that dG∗ (X) ⩽ 6k − 6 but for any proper subset Y ⊊ X , dG∗ (Y ) ⩾ 6k − 4.
Let H1 = G∗

[X] and let G∗

0 be the graph obtained from G∗ by identifying all the vertices of X c

nto a new vertex x. Note that dG∗
0
(x) ⩽ 6k − 6 and except [{x}, V (G∗

0) \ {x}] every other cut of G∗

0
as size at least 6k− 4. By Theorem 4.7, H1 is strongly Zℓ-connected. Moreover, H1 is connected by
he minimality of X .

Let H2 = G∗/H1. Clearly, (H2, σ
∗
|H2 ) is a signed Eulerian planar graph with v(H2) < v(G∗). Thus

H2, σ
∗
|H2 ) admits a circular 4k

2k−1 -flow, as its dual graph is a proper subgraph of the minimum
counterexample (G, σ ). Since H1 is strongly Zℓ-connected and G∗/H1 admits a circular 4k

2k−1 -flow,
G∗, σ ∗) admits a circular 4k

2k−1 -flow by Theorem 5.6. Hence, (G, σ ) is circular 4k
2k−1 -colorable by

uality, a contradiction. □

Another natural implication of Theorem 1.8 is Theorem 1.6, to obtain which we need the next
esult. We denote by 2G the graph obtained from G by replacing each edge with 2 parallel edges.

heorem 5.9. Given a graph G and an integer k with k ⩾ 2, if 2G is strongly Z2k-connected, then for
ny signature σ on G, the signed graph (G, σ ) admits a circular 2k -flow.
k−1
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Proof. For each edge e ∈ E(G), we denote the parallel edges in E(2G) corresponding to e by ei, i ∈ [2].
et Ĝ := (G, σ ). Since 2G is strongly Z2k-connected, for any (4k, β)-boundary with β(v) ≡ 2k · pĜ(v)
mod 4k) of 2G, there is a (4k, β)-orientation D1 on 2G.

Let D be an orientation on G. Let I be a mapping from E(2G) to {1, −1} satisfying that I(ei) = 1
f ei in D1 has the same orientation as e in D and I(ei) = −1 otherwise. We define a mapping
1(e) := I(e1) + I(e2) for each e ∈ E(G). Note that f1(e) ∈ {−2, 0, 2} for each edge e ∈ E(G) and
Df1(v) ≡ β(v) (mod 4k) for each vertex v ∈ V (G).
We then define another mapping f2 : E(G) → {0, 2k} satisfying that f2(e) = 2k for each positive

dge e and f2(e) = 0 for each negative edge e. Thus ∂Df2(v) ≡ 2k · pĜ(v) (mod 4k) for each vertex
∈ V (G).
Let f = f1 + f2. Note that f (e) ∈ {2k−2, 2k, 2k+2} for each positive edge e, f (e) ∈ {−2, 0, 2} for

ach negative edge e and ∂Df (v) = ∂Df1(v)+ ∂Df2(v) ≡ 0 (mod 4k) for each vertex v ∈ V (G). Hence,
D, f ) is a circular 4k

2k−2 -flow, which is equivalent to a circular 2k
k−1 -flow. □

Last, we give the proof of Theorem 1.6 on the chromatic numbers of signed planar graphs with
iven girth conditions.

heorem 1.6. Given an integer k with 2 ⩽ k ⩽ 4, every signed planar graph of girth at least 3k − 2 is
ircular 2k

k−1 -colorable.

Proof. Given an integer k with 2 ⩽ k ⩽ 4, let (G, σ ) be a signed plane graph of girth at least 3k− 2
nd (G∗, σ ∗) be its dual signed graph. Thus the underlying graph G∗ is (3k−2)-edge-connected. Thus
G∗ is (6k − 4)-edge-connected, which is strongly Z2k-connected by Theorem 1.8. By Theorem 5.9,
G∗, σ ∗) admits a circular 2k

k−1 -flow and by duality, (G, σ ) is circular 2k
k−1 -colorable. □

6. Concluding remarks

This paper proves that every signed bipartite planar graph of negative girth at least 6k−4 admits
a homomorphism to C−2k for k ∈ {2, 3, 4}, noting that the case when k = 1 is trivial. This negative-
girth bound is shown to be tight when k = 2 in [18], but we do not know whether it is tight for
k = 3, 4. From the duality, by Corollary 5.4, Theorem 1.4 also indicates that there exist 6-edge-
connected Eulerian planar graphs which are not strongly Z4-connected. But it is still open whether
every (4k − 2)-edge-connected planar graph is strongly Z2k-connected for k ⩾ 3. Note that, by
Proposition 2.4, every (4k − 4)-regular graph G with v(G) > 2k − 1 is not strongly Z2k-connected.
With a special signature, we construct below a (4k − 4)-edge-connected (4k − 4)-regular signed
Eulerian planar graph that does not admit a circular 4k

2k−1 -flow. Thus its dual provides a signed
ipartite planar graph of girth 4k − 4 which does not admit a homomorphism to C−2k.
Given an integer k ⩾ 2, let (W̃4k−4, σ ) be a signed multi-wheel defined as follows: the vertex set is

{v1, . . . , v4k−4, w}, the edge set is {v1v2, . . . , vivi+1, . . . , v4k−4v1, wv1, . . . , wv4k−4}, and µ(wvi) = 1,
µ(vivi+1) = 2k − 3 and µ(vi+1vi+2) = 2k − 2 for i ∈ {1, 3, . . . , 4k − 5}; for each pair of vertices
v2iv2i+1 (indices are taken modulo 4k−4), we assign a negative sign to one edge and positive signs
to the others, and for the vertex w, assign a negative sign to wv1 and positive signs to all the other
edges incident to w. See Fig. 3 for (W̃8, σ ) as an example.

We claim that the signed graph Ŵ4k−4 := (W̃4k−4, σ ) admits no circular 4k
2k−1 -flow.

Note that Ŵ4k−4 is (4k − 4)-edge-connected. Given a (4k, β)-boundary of Ŵ4k−4 with β(v1) = 0
nd β(v2) = · · · = β(v4k−4) = β(w) = 2k, let γ : V (Ŵ4k−4) → {0, ±2k} be the mapping
atisfying the conditions (1), (2), (3) of Lemma 2.13 with respect to β . Since

∑
v∈V (Ŵ4k−4)

γ (v) = 0,
e have |γ −1(2k)| = |γ −1(−2k)| = 2k − 2 and it implies a natural partition of the vertex set

v2, v3, . . . , v4k−4, w} into V1 and V2 such that γ (v) = 2k for v ∈ V1 and γ (v) = −2k for v ∈ V2.
Recall that γ (v1) ≡ 0 (mod 4k) and γ (v) ≡ 2k (mod 4k) for v ∈ V1 ∪ V2, and max{γ (v)} −

in{γ (v)} ⩽ 4k. Next, we shall show that there is no γ -orientation for any possible γ , by
emma 2.13 which implies that there is no (4k, β)-orientation on Ŵ4k−4. By Theorem 2.14, it suffices
o prove that with respect to γ , there is a bad set in Ŵ4k−4. We need to consider the following two
ases.
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Fig. 3. The graph (W̃8, σ ).

• If for some i ∈ {2, . . . , 4k − 5}, γ (vi) = γ (vi+1), then |γ (vi) + γ (vi+1)| = 4k. Moreover,
d({vi, vi+1}) ⩽ 2+ 2× (2k− 2) = 4k− 2. Noting that |γ (vi) + γ (vi+1)| > d({vi, vi+1}), {vi, vi+1}

is a bad set.
• Assume that for any i ∈ {2, . . . , 4k−4}, γ (vi) ̸= γ (vi+1). By alternating the values 2k and −2k

on the vertex of the path v2v3 · · · v4k−4 which is of an even length, we have γ (v2) = γ (v4k−4).
Let S = {v1, v2, v4k−4}. Note that |

∑
v∈S γ (v)| = 4k and d(S) = 3+ (2k−2)+ (2k−3) = 4k−2.

Thus, S is a bad set.

Hence, by Theorem 5.3, (W̃4k−4, σ ) admits no circular 4k
2k−1 -flow.
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