
Journal of Combinatorial Theory, Series B 153 (2022) 61–80
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series B

www.elsevier.com/locate/jctb

Nowhere-zero 3-flows in toroidal graphs

Jiaao Li a, Yulai Ma b, Zhengke Miao c, Yongtang Shi b, 
Weifan Wang d, Cun-Quan Zhang e

a School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, 
China
b Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
c Research Institute of Mathematical Science and School of Mathematics and 
Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
d Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 
321004, China
e Department of Mathematics, West Virginia University, Morgantown, WV 26506, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 February 2021
Available online 23 November 2021

Keywords:
Integer flow
Tutte’s 3-flow conjecture
Toroidal graphs

Tutte’s 3-flow conjecture states that every 4-edge-connected 
graph admits a nowhere-zero 3-flow. The planar case of 
Tutte’s 3-flow conjecture is the classical Grötzsch’s Theorem 
(1959). Steinberg and Younger (1989) further verified Tutte’s 
3-flow conjecture for projective planar graphs. In this paper 
we confirm Tutte’s 3-flow conjecture for all toroidal graphs.
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1. Introduction

The concept of integer flow was originally introduced by Tutte [14,15] as the dual of 
graph coloring. Tutte in 1972 proposed the following well-known 3-flow conjecture.
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3-Flow Conjecture: Every 4-edge-connected graph admits a nowhere-zero 3-flow.

This conjecture was confirmed for planar graphs, which is the dual of Grötzsch’s 
Theorem [2] in 1959 that every triangle-free planar graph is 3-vertex-colorable. Steinberg 
and Younger [9] in 1989 further verified it for projective planar graphs. How about 
toroidal graphs? This natural question was asked implicitly in the survey “The state of 
the three color problem” [10] by Steinberg in 1993.

The corresponding problem for toroidal graphs was solved by Thomassen [11] in 1994 
as follows.

Theorem 1.1. (Thomassen [11]) Every loopless graph embedded on torus without con-
tractible cycles of length at most four is 3-vertex-colorable.

The dual version of Theorem 1.1 for flow problems, by a result of Tutte [15] (Theo-
rem 4.2 below), is restated as follows.

Corollary 1.1. For a graph G embedded on torus, if its dual graph G∗ is loopless and 
contains no contractible cycles of length at most four, then G admits a nowhere-zero 
3-flow.

It was pointed out by Thomassen [4] that, in order to verify the 3-Flow Conjecture for 
toroidal graphs, one more result is needed for nearly-planar graphs beyond Theorem 1.1. 
Here a graph G is called nearly-planar if there is an edge e ∈ E(G) such that G − e is 
planar. This problem proposed by Thomassen is proved in this paper as one of the main 
results.

Theorem 1.2. Every 4-edge-connected nearly-planar graph admits a nowhere-zero 3-flow.

Aided with Corollary 1.1 and Theorem 1.2, the 3-Flow Conjecture is verified for 
toroidal graphs as follows.

Theorem 1.3. Every 4-edge-connected toroidal graph admits a nowhere-zero 3-flow.

Note that Theorem 1.3 is not a straightforward consequence of Corollary 1.1 and 
Theorem 1.2. For some technical reasons, it is rather complicated to apply some lifting 
techniques for 4-edge-connected graphs embedded on torus, in which the embedding 
property may not be preserved. In fact, we will prove a more convenient and stronger 
version of Theorem 1.3 concerning odd edge connectivity, where the definition of odd 
edge connectivity can be found in Section 2.

Theorem 1.4. Every odd-5-edge-connected toroidal graph admits a modulo 3-orientation.

We outline the proof of this theorem as follows. By a lifting lemma for odd edge 
connectivity (Lemma 4.1), any minimal counterexample must be a 5-regular toroidal 
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graph G. The proof is divided into three cases according to the structure of the dual 
graph G∗ of G on torus. In the first case, we suppose that G∗ contains neither loops nor 
contractible 4-cycles, then Corollary 1.1 implies that G admits a nowhere-zero 3-flow. 
In the second case, we suppose that G∗ contains a loop, then by the above mentioned 
discovery of Thomassen, the dual edge of this loop in G is a handle-edge e such that G −e

is planar, which implies that G is a nearly-planar graph and it admits a nowhere-zero 3-
flow by Theorem 1.2. In the last case, we assume instead that G∗ contains a contractible 
4-cycle C. In this case the dual of C is a 4-edge-cut in G and we use flow extension 
arguments of planar graphs to yield a smaller counterexample, completing the proof. See 
Section 4 for more details.

2. Preliminaries

In this section, we introduce some necessary notation and terminology. Graphs in this 
paper are finite, while multiple edges are allowed. For additional notation and termi-
nology we follow [1,16]. Let G = (V, E) be a graph and let k be a positive integer. We 
use [k] to denote the set {1, 2, . . . , k}. A vertex of degree k (at most k, respectively) in 
G is called a k-vertex (k−-vertex, respectively), and we denote by Vk(G) (Vk−(G), re-
spectively) the set of all k-vertices (k−-vertices, respectively). An edge-cut is a minimal 
set of edges whose deletion increases the number of components in a graph. Denote by 
k-edge-cut (k−-edge-cut, respectively) an edge-cut of size k (at most k, respectively).

For vertices u and v of G, we denote by μG(u, v) the number of parallel edges joining u
and v. The multiplicity μ(G) of G is defined as μ(G) = max{μG(u, v) : {u, v} ⊆ V (G)}. 
We use EG(v) to denote the set of all edges incident with v in G. The neighborhood of 
v and closed neighborhood of v are denoted by NG(v) = {x : EG(x) ∩EG(v) �= ∅, x �= v}
and NG[v] = NG(v) ∪ {v}, respectively. For vertex subsets U, W ⊆ V (G), let [U, W ]G =
(
⋃

u∈U EG(u)) ∩ (
⋃

w∈W EG(w)). When U = {u} or W = {w}, for convenience, we write 
[u, W ]G or [U, w]G for [U, W ]G, respectively. The subgraph of G induced by S ⊆ V (G)
is denoted by G[S]. For any subset S ⊆ V (G), we denote Sc = V (G) − S and set 
dG(S) = |[S, Sc]G|. A graph is called odd-k-edge-connected if it contains no (2t −1)-edge-
cut for any 1 ≤ t ≤ 	k

2 
. An edge-cut [S, Sc]G in a connected graph G is called essential
if both G[S] and G[Sc] contain nonloop edges. Moreover, a connected graph is called 
essentially k-edge-connected if it contains no essential (k − 1)−-edge-cut.

A cycle C of a plane graph is called separating if each of its interior and exterior 
contains at least one vertex. A separating k-cycle is a separating cycle of length k. Two 
edges in a plane graph G are called consecutive if they are adjacent in the boundary of 
a face of G.

A graph G is called nearly-planar if there exists an edge e ∈ E(G) such that G − e

is planar. Such an edge is called a handle-edge. We use N to denote the collection of 
all nearly-planar graphs. Note that every planar graph is nearly-planar, and every edge 
can be viewed as a handle-edge in a planar graph. A graph is called toroidal if it can be 



64 J. Li et al. / Journal of Combinatorial Theory, Series B 153 (2022) 61–80
embedded on the torus. A cycle in an embedded graph is called contractible if one of its 
faces is homeomorphic to a disc.

Let D = D(G) be an orientation of G. For each v ∈ V (G), we use E+
D(v) and E−

D(v)
to denote the set of all arcs directed out of v and directed into v, respectively. Denote 
d+
D(v) = |E+

D(v)| and d−D(v) = |E−
D(v)|. If d+

D(v) −d−D(v) ≡ 0 (mod 3) for each v ∈ V (G), 
then D is called a modulo 3-orientation of G. For an Abelian group A, an ordered pair 
(D, f) is called an A-flow of G if D is an orientation and f is an edge-mapping from 
E(G) to A such that every vertex v ∈ V (G) is balanced, that is

∑
e∈E+

D(v)

f(e) −
∑

e∈E−
D(v)

f(e) = 0.

An A-flow (D, f) is nowhere-zero if f(e) ∈ A \ {0}, ∀e ∈ E(G). Clearly, modulo 3-
orientations and nowhere-zero Z3-flows are equivalent as 2 = −1 in Z3. A nowhere-
zero Z-flow is called a nowhere-zero k-flow if 0 < |f(e)| < k for each e ∈ E(G). A 
theorem of Tutte [15] shows that for all graphs, the existence of a nowhere-zero Zk-flow 
is equivalent to the existence of a nowhere-zero k-flow. Therefore in what follows, we 
shall study nowhere-zero 3-flows in terms of modulo 3-orientations. The advantage of 
modulo 3-orientations is allowing to consider the orientations of graphs only, and ignore 
the edge-mapping.

3. Nearly-planar graphs and flow extensions

3.1. Flow extensions

A graph G is called M3-extendable at a vertex u ∈ V (G) if any pre-orientation Du

at EG(u) with d+
Du

(u) ≡ d−Du
(u) (mod 3) can be extended to a modulo 3-orientation D

of the entire graph G. Inspired by the works of Steinberg and Younger [9], Thomassen 
[13] and Lovász et al. [8], and using refined discharging arguments, we shall prove the 
following key lemma as part of the proof of Theorem 1.4.

Lemma 3.1. If G is a 5-edge-connected nearly-planar graph, then G is M3-extendable at 
any 7−-vertex incident with a handle-edge.

Note that Lemma 3.1 also holds for planar graphs since every planar graph is a nearly-
planar graph by definition. The planar case of Lemma 3.1 will be used in the proof of 
Theorem 1.4 in Section 4.

For induction purposes, we shall apply Lemma 3.1 to prove the following lemma, 
which is slightly stronger than Theorem 1.2 and allows 2-edge-cuts.

Lemma 3.2. Every odd-5-edge-connected nearly-planar graph admits a modulo 3-orienta-
tion.



J. Li et al. / Journal of Combinatorial Theory, Series B 153 (2022) 61–80 65
3.2. Some facts and lemmas for nearly-planar graphs

Next we introduce two operations, contracting and lifting, as our main tools for the 
proof. To lift a pair of edges vv1 and vv2 incident to a vertex v in a graph G means to 
delete vv1 and vv2, and adding a new edge e′ = v1v2 joining v1 and v2. To contract an 
edge e in G means to identify two endpoints of e and then delete the resulting loops. For 
an edge e ∈ E(G), we use G/e to denote the graph obtained from G by contracting e. For 
a subgraph H of G, we write G/H to denote the graph obtained from G by successively 
contracting all edges in E(H).

Many basic properties of graphs are preserved after contracting and lifting operations 
by their definitions. We summarize these useful facts as follows, these will be frequently 
used implicitly in later proofs.

Observation 3.3. (for lifting) Let G be a nearly-planar graph with a handle-edge e0. Let 
vv1, vv2 ∈ E(G) and let G′ be the graph obtained from G by lifting vv1 and vv2. Each of 
the following holds.
(i) If e0 ∈ {vv1, vv2}, then G′ ∈ N and the new edge v1v2 is a handle-edge of G′.
(ii) If vv1, vv2 are two consecutive edges in a planar embedding of G − e0, then G′ ∈ N
and e0 is a handle-edge of G′.
(iii) If G′ admits a modulo 3-orientation, then G admits a modulo 3-orientation as well.

Observation 3.4. (for contracting) Let G be a nearly-planar graph with a handle-edge e0.
(i) For any edge e ∈ E(G) with e �= e0, G/e ∈ N .
(ii) Let H be a subgraph of G such that H−e0 is connected. Then we have the following.

(ii-a) If e0 ∈ G[V (H)], then G/H is a planar graph and so G/H ∈ N .
(ii-b) If e0 /∈ G[V (H)], then G/H ∈ N and e0 is still a handle-edge in G/H.

(iii) For any 2-edge-connected subgraph H of G, we have G/H ∈ N .

Observation 3.5. Let G be a graph with |V (G)| ≥ 3 and k be a positive integer. Let 
e ∈ E(G). If G has no k-edge-cut, then G/e contains no k-edge-cut as well. In particular, 
if G is k-edge-connected, then so is G/e.

Observation 3.6. If G is k-edge-connected, then for any S � V (G) with dG(S) ≤ 2k− 1, 
both G[S] and G[Sc] are connected.

Lemma 3.7. Every 4-edge-connected essentially 6-edge-connected plane graph G with 
|V (G)| ≥ 6 contains no separating 3-cycle uvwu with max{dG(u), dG(v), dG(w)} ≤ 5.

Proof. To the contrary, suppose that G has a separating 3-cycle C = uvwu with 
max{dG(u), dG(v), dG(w)} ≤ 5. Let S1 (S2, respectively) be the subset of V (G) consist-
ing of the vertices in the interior (exterior, respectively) of C. Note that S1 ∩ V (C) = ∅
and S2 ∩ V (C) = ∅. Clearly, dG(S1) + dG(S2) = dG(V (C)) ≤ 9. Since |V (G)| ≥ 6, 
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WLOG, we assume |S2| ≥ 2. Then it is clear that dG(S1) ≥ 4 and dG(S2) ≥ 6 since G is 
4-edge-connected essentially 6-edge-connected, a contradiction. �
Definition 3.8. Let G be a graph.
(i) For a mapping β : V (G) �→ Z3 with 

∑
v∈V (G) β(v) ≡ 0 (mod 3), an orientation D of 

G is called a β-orientation if d+
D(v) − d−D(v) ≡ β(v) (mod 3) for every vertex v ∈ V (G).

(ii) G is called Z3-connected if it admits a β-orientation for any possible mapping β :
V (G) �→ Z3 with 

∑
v∈V (G) β(v) ≡ 0 (mod 3).

A useful method to obtain modulo 3-orientations is the following lemma.

Lemma 3.9. (Lai [5]) Let G be a graph, and let H ⊆ G be a subgraph of G.
(i) If H is Z3-connected and G/H has a modulo 3-orientation, then G has a modulo 
3-orientation.
(ii) If both H and G/H are Z3-connected, then G is also Z3-connected.
(iii) The graphs 2K2 and W4 are Z3-connected, where 2K2 consists of two vertices and 
two parallel edges, and W4 is constructed by adding a new center vertex connecting to 
each vertex of a 4-cycle.

4. Proof of Theorem 1.4 assuming Lemmas 3.1 and 3.2

We shall prove our main result Theorem 1.4 in this section, assuming the truth of 
Lemmas 3.1 and 3.2. The proofs of Lemmas 3.1 and 3.2 are much more involved, and 
they will be postponed to later sections.

We start with the following useful lifting lemma of Zhang [17] for odd edge connec-
tivity. The advantage of this lemma is to preserve the embedding property of the new 
graph after lifting.

Lemma 4.1. (Zhang [17]) Let G = (V, E) be an odd-k-edge-connected graph (where k ≥ 3
is an odd number). Assume that there is a vertex x ∈ V (G) such that d(x) �= k. Arbitrarily 
label the edges of G incident with x as {e1, . . . , eb} (where b = d(x)). Then there is an 
integer i ∈ {1, . . . , b} such that the new graph obtained from G by lifting ei and ei+1 (the 
index is taken modulo b) away from x remains odd-k-edge-connected.

Another key result is the following fundamental flow-coloring duality of Tutte [15] for 
orientable surfaces, which together with Theorem 1.1 of Thomassen [11] would handle 
toroidal graphs whose dual graphs on torus contain neither loops nor contractible small 
cycles.

Theorem 4.2. (Tutte [15], see [3,16]) If a graph G has a face-k-colorable 2-cell embedding 
in some orientable surface, then it has a nowhere-zero k-flow.
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Now we are ready to prove Theorem 1.4 that every odd-5-edge-connected toroidal 
graph admits a modulo 3-orientation.

Proof of Theorem 1.4. By way of contradiction, we assume the result is false and study 
a minimal counterexample G with respect to |V (G)| + |E(G)|. The theorem naturally 
holds for graphs with two vertices, and so we have |V (G)| ≥ 3. Clearly, G is 2-connected; 
otherwise we use induction on all the blocks of G to result in a modulo 3-orientation 
of G. Note that the toroidal property and odd edge connectivity are preserved under 
contraction. By Lemma 3.9(i)(iii), G contains no parallel edges. It is also clear that G
contains no essential 2-edge-cut [S, Sc]G. Otherwise we use induction on G/G[Sc] and 
G/G[S] to obtain modulo 3-orientations D1 and D2, respectively. Then either D1 and 
D2 agree along [S, Sc]G directly, or they agree after reversing all edge directions in D2. 
Thus, their union provides a modulo 3-orientation of G, a contradiction. Moreover, we 
claim that G is 5-regular by Lemma 4.1. We embed the graph G on torus and also 
use G to denote the embedding for notational convenience. If G is not 5-regular, then 
there is a vertex x whose degree is not equal to five. So we apply Lemma 4.1 to lift two 
consecutive edges incident to the vertex x, yield a smaller odd-5-edge-connected graph 
without modulo 3-orientations, a contradiction. Hence G must be a 4-edge-connected 
5-regular graph.

Let G∗ be the dual graph of G on torus. The proof is divided into three cases according 
to the structure of G∗.

Case 1. G∗ contains neither noncontractible loops nor contractible 4-cycles.
Note that there exist neither contractible loops nor contractible 3-cycles in G∗ since 

G is 4-edge-connected. Consider the underlying simple graph G̃∗ of G∗, i.e., the graph 
obtained from G∗ by deleting all parallel edges. Then G̃∗ is a loopless simple graph 
embedded on torus without contractible cycles of length at most 4. By Theorem 1.1, we 
obtain that G̃∗ (and G∗) is 3-vertex-colorable, and so G is face-3-colorable. If G contains 
a face not homeomorphic to an open disk, then G is a planar graph, and so G has a 
nowhere-zero 3-flow by Grötzsch’s Theorem, a contradiction. Hence, we suppose that G
is a 2-cell embedding on torus. As G is face-3-colorable and by Theorem 4.2, the graph 
G also has a nowhere-zero 3-flow, a contradiction again. This verifies Case 1, and we 
conclude that G∗ has a noncontractible loop or a contractible 4-cycle.

Case 2. G∗ contains a noncontractible loop, say e′0.
Let e0 be the dual edge of e′0 in G. Observe that, if we cut the graph G∗ and the torus 

up along e′0, then we obtain a planar embedding. This implies that G − e0 has a planar 
embedding and so G is nearly-planar. By Lemma 3.2, G has a modulo 3-orientation, a 
contradiction.

Case 3. G∗ contains a contractible 4-cycle.
By the definition of contractible cycle, we obtain that G has a 4-edge-cut [S, Sc]G, 

which is the dual of the contractible 4-cycle of G∗, such that G/G[Sc] is planar and 
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G/G[S] is toroidal. Since G is 4-edge-connected, we have that G/G[Sc] is 4-edge-
connected, and so dG(W ) ≥ 4 for any W ⊆ S. Among all subset W ⊆ S with dG(W ) = 4, 
we choose one, say T , with minimal cardinality (possibly T = S). That is, for any proper 
subset T1 � T , we have dG(T1) ≥ 5 by the minimality of T . Clearly, |T | ≥ 2 since G is 
5-regular. Moreover, G[T ] and G[T c] are both connected, since G is 4-edge-connected. 
Then we have that G/G[T c] is planar and G/G[T ] is toroidal.

Note that G/G[T c] and G/G[T ] are both 4-edge-connected by Observation 3.5. Since 
G is a minimal counterexample, we get a modulo 3-orientation D1 of G/G[T ]. Then, 
in G, we contract G[T c] to become a new vertex u, and we assign a pre-orientation Du

which is the restriction of D1 on those edges incident to u. Clearly, the degree of u in the 
planar graph G/G[T c] is 4. Then we replace one arbitrary oriented edge incident with u
by two oriented edges in the opposite direction to obtain a new planar graph G′ with a 
new pre-orientation D′

u. By the fact that dG(T1) ≥ 5 for any proper subset T1 � T from 
the minimality of T , the new planar graph G′ is 5-edge-connected. By Lemma 3.1, G′

has an M3-extension of D′
u. Thus, G/G[T c] has an M3-extension of Du. This, together 

with D1, results in a modulo 3-orientation on G, a contradiction. This completes the 
proof. �

5. Proof of Lemma 3.1

Our proof of Lemma 3.1 employs some flow extension ideas from Steinberg and 
Younger [9], Thomassen [11–13], and Lovász et al. [8] in their proofs of Grötzsch’s theo-
rem and the weak 3-flow conjecture. Moreover, some new ideas come from our work [7]
on 3-flows of some signed planar graphs, which is used to deal with some negative edges 
in various locations. Here we realize that the handle-edge has behavior similar to a pair 
of negative loops, and similar but modified reductions and discharging arguments can 
be applied for nearly-planar graphs.

Proof outlines: First, we apply reductions to show that any minimal counterexample 
G is almost 5-regular and contains no small nontrivial edge-cut. Then, we use some 
discharging arguments to find Grötzsch Configurations in several different situations. 
Finally, we perform a reduction using a Grötzsch Configuration to get a smaller 5-edge-
connected nearly-planar graph, leading to a contradiction and completing the proof.

We copy Lemma 3.1 here for convenience.

Lemma 3.1. If G is a 5-edge-connected nearly-planar graph, then G is M3-extendable at 
any 7−-vertex incident with a handle-edge.

Now we proceed to prove Lemma 3.1 in the following subsections.
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5.1. Some prior reductions

By way of contradiction, we choose a counterexample G of Lemma 3.1 with a 7−-vertex 
u, a pre-orientation Du, and a handle-edge e0 = uu0 such that

(1) |V (G)| + |E(G − u)| is minimum;
(2) subject to (1), dG(u) is as large as possible;
(3) subject to (1) and (2), if G is planar, then we choose a handle-edge e0 = uu0 of G

with μG(u, u0) minimized among all possible choices.

Claim I. We have dG(u) = 7 and |V (G)| ≥ 4.

Proof. First, we claim that dG(u) = 7. For otherwise, u is a 5-vertex or 6-vertex. If u
is a 6-vertex, then we replace an oriented edge incident with u other than e0 by two 
oriented edges in the opposite direction; if u is a 5-vertex, then we replace an oriented 
edge incident with u other than e0 by two oriented edges in the same direction and one 
oriented edge in the opposite direction. In this way, we get another counterexample G′

with |V (G′)| + |E(G′ − u)| still minimized, which is a contradiction to the choice of (2) 
with dG(u) being maximized.

In addition, it is easy to check that Lemma 3.1 holds naturally when |V (G)| = 2 or 
|V (G)| = 3, and so we have |V (G)| ≥ 4. �

Now, we choose a planar embedding of G − e0 without separating 2-cycles and still 
denote this planar embedding by G −e0 for notational convenience. Notice that, to avoid 
separating 2-cycles, it is enough to embed all parallel edges between two vertices x and 
y consecutively in a cyclic order for each vertex pair. In the following, the graph G − e0
mentioned in context always takes the planar embedding.

Claim II. Each of the following holds.
(i) G − u contains no Z3-connected subgraph of order at least 2. In particular, G − u

contains neither 2K2 nor W4 as a subgraph by Lemma 3.9(iii).
(ii) G is 2-connected.

Proof. (i) Suppose to the contrary that G − u contains a Z3-connected subgraph G1
of order at least 2. Since every Z3-connected graph is 2-edge-connected, by Obser-
vations 3.4(ii-b) and 3.5, G/G1 is a 5-edge-connected nearly-planar graph with the 
handle-edge e0 incident with u. The minimality of G and Lemma 3.9(i) imply that 
G/G1 has an M3-extension of Du, and so does G, a contradiction.

(ii) Suppose to the contrary that G contains a cut-vertex v. Then we can obtain 
two connected nearly-planar subgraphs of G, denoted by G1 and G2, satisfying that 
V (G1) ∩ V (G2) = {v} and V (G1) ∪ V (G2) = V (G). By Observation 3.6, u �= v. We may 
assume u ∈ V (G1). So G1 is nearly-planar and G2 is planar. Moreover, G2 is simple 
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by (i). Note that any edge-cut of G is an edge-cut of G1 or G2, and vice versa. So 
we get that G1 and G2 are both 5-edge-connected. The minimality of G implies that 
Lemma 3.1 is applicable for both G1 and G2. Hence G1 has an M3-extension of Du. 
Since G2 is a 5-edge-connected simple planar graph, it has a modulo 3-orientation by 
assigning a pre-orientation to a 5-vertex of G2 and applying Lemma 3.1. Moreover, the 
union of their orientations is an M3-extension of Du on G, a contradiction. Hence G is 
2-connected. �
Claim III. G contains no essential 7−-edge-cut.

Proof. By contradiction, we suppose that [S, Sc]G is an essential 7−-edge-cut. Clearly, 
G[S] and G[Sc] are both 2-edge-connected since G is 5-edge-connected and by Observa-
tion 3.6. Moreover, G/G[S] and G/G[Sc] are both 5-edge-connected nearly-planar graphs 
by Observations 3.4(iii) and 3.5.

We may assume u ∈ S. Since G is a minimal counterexample, we get an M3-extension 
D1 of Du on G/G[Sc]. Then, in G, we contract G[S] to become a vertex u′, and we assign 
a pre-orientation D′

u′ which is the restriction of D1 on G/G[S]. By Observation 3.4(ii), if 
u0 ∈ S, then G/G[S] is a planar graph; if u0 ∈ Sc, then G/G[S] is a nearly-planar graph 
with the handle-edge e0 incident with u′. For both cases above, we obtain that G/G[S]
has an M3-extension of D′

u′ by the minimality of G. This, together with D1, results in 
an M3-extension of Du on G, a contradiction. �
Claim IV. Each of the following holds.
(i) μ(G) ≤ 2, all parallel edges belong to EG(u), and no edge is parallel to e0.
(ii) Every vertex of G other than u is a 5-vertex.

Proof. First, we claim that dG(v) ≤ 6 for each v ∈ V (G) −{u}. Suppose to the contrary 
that there exists a vertex v ∈ V (G) − {u} with dG(v) ≥ 7. By Claim II(ii), the vertex v
has at least two distinct neighbors. Recall that G −e0 is a plane graph. If |NG−e0(v)| ≥ 2, 
then we obtain a new graph G′ from G by lifting a pair of edges vv1, vv2 incident with v
in G − e0 that are successive but not parallel; if |NG−e0(v)| = 1, then e0 is incident with 
v and a new graph G′ is obtained from G by lifting a pair of edges vv1, e0 = vv2 incident 
with v in G that are not parallel. For both cases above, we have that G′ ∈ N and there 
is a handle-edge incident with u in G′ by Observation 3.3. Then we obtain a new pre-
orientation D′

u on EG′(u) by restricting Du on EG′(u) and setting D′
u(vjvi) = D(vvi)

if vvi is pre-oriented in G for {i, j} = {1, 2}. It is clear that δ(G′) ≥ 5 and G′ contains 
neither loops nor essential 5−-edge-cuts by Claim III. So G′ is 5-edge-connected. Since 
G is a minimal counterexample, we get an M3-extension D′ of D′

u on G′, and then 
it provides an M3-extension of Du on G by Observation 3.3(iii), a contradiction. This 
proves that dG(v) ≤ 6 for each v ∈ V (G) − {u}.

By Claim II(i), the only possible parallel edges are in EG(u). If there exists a vertex 
u1 ∈ NG(u) such that μG(u, u1) ≥ 3, then for S = {u, u1}, dG(S) ≤ 7 and [S, Sc]G is an 
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essential edge-cut by Claim I and Observation 3.6, a contradiction to Claim III. Hence, 
we have μ(G) ≤ 2. Clearly, if G is not planar, then there exists no edge parallel to e0 by 
the definition of a handle-edge in a nearly-planar graph; if G is planar, then every edge 
incident with u is a handle-edge of G and so there exists no edge parallel to e0 by the 
choice (3) of e0. This proves (i).

In order to prove (ii), it suffices to show that dG(v) �= 6 for each v ∈ V (G) −{u}. Now, 
suppose that there exists a vertex v ∈ V (G) − {u} with dG(v) = 6. By Claim IV(i) and 
Claim II(i), v is incident with at most two parallel edges. Similar to the above discussion, 
we lift all the edges incident with v in pairs successively in a way that keeps near-planarity 
and does not create loops. The obtained new nearly-planar graph is denoted by G′ with 
a new pre-orientation D′

u on EG′(u). Clearly, δ(G′) ≥ 5 and G′ is connected since G − v

is connected by Claim II(ii). If there is an essential 4−-edge-cut [S, Sc]G′ of G′, then by 
the fact that |[v, S]G| ≤ 3 or |[v, Sc]G| ≤ 3, we have dG(S) ≤ 7 or dG(S ∪ {v}) ≤ 7. This 
is a contradiction to Claim III. So G′ is 5-edge-connected. Hence the minimality of G
implies that G′ has an M3-extension D′ of D′

u, and thus G has an M3-extension of Du

by Observation 3.3(iii), a contradiction again. This verifies (ii). �
In the rest of the proof, we will find a Grötzsch Configuration in G − e0 to perform 

reduction.

5.2. Finding Grötzsch configurations

Denote by R the graph obtained from W5 by deleting an edge in the 5-cycle.

Definition 5.1. Let G be a graph with an edge e0 for which G − e0 is a plane graph in 
which some of the edges are pre-oriented. Let H be a subgraph of G − e0 isomorphic to 
R. Then H is called a Grötzsch Configuration of G − e0 if each of the following holds:
(i) dG(v) = 5 for each v ∈ V (H);
(ii) every triangle in H is a boundary of a 3-face of G − e0;
(iii) for any ab ∈ E(H), μG−e0(a, b) = 1 and ab is not pre-oriented in G − e0;

We label the vertices of H as shown in Fig. 1(a). The vertex x is called a center of 
H and vertices x2, x4 are called two corners of H. Furthermore, a vertex v ∈ {x2, x4} is 
called a good corner of H if it is not incident with parallel edges in G − e0. Denoted by 
(H; v) the Grötzsch Configuration H with a good corner v.

Claim V. G − e0 contains a Grötzsch Configuration H with a good corner.

Proof. Recall that e0 = uu0. We start with Euler’s Formula:

|V (G− e0)| − |E(G− e0)| + |F (G− e0)| = 2,

and the Degree Sum Formula:
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Fig. 1. A Grötzsch Configuration and some related graphs.

Fig. 2. A partition {Y1, Y2, Y3, Y4, Y5} of V (G).

2|E(G− e0)| =
∑

v∈V (G−e0)

dG−e0(v).

Following Lebesgue [6], we define the Euler contribution w : V (G − e0) �→ Q with

w(v) = −dG−e0(v) − 2
2 +

∑
f∈FG−e0 (v)

1
d(f) ,

where FG−e0(v) is the set of faces incident with v and d(f) is the number of edges 
incident with the face f in G − e0. Combining Euler’s Formula with the Degree Sum 
Formula, we have

∑
v∈V (G−e0)

w(v) = |F (G− e0)| − |E(G− e0)| + |V (G− e0)| = 2. (1)

The vertex set V (G − e0) = V (G) can be partitioned into five subsets, denoted by 
{Y1, Y2, Y3, Y4, Y5}, as shown in Fig. 2, where Y1 = {u}, Y2 ⊆ NG−e0(u) and consists of 
vertices incident with precisely one digon, Y3 = NG−e0(u) − Y2, Y4 = {u0} (where e0 =
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uu0), and Y5 = V (G −e0) −Y1−Y2−Y3−Y4 (that is, Y5 = V (G −e0) −{u, u0} −NG−e0(u)). 
By Definition 5.1 and Claim IV, every center of a Grötzsch Configuration of G − e0 is 
in Y5 and no vertex in Y3 ∪ Y4 ∪ Y5 is incident with a digon.

In the remaining proof, by calculating Euler contribution of each vertex, we show that 
Y5 contains at least 5 − |Y2| centers of Grötzsch Configurations.

Note that |Y1| = |Y4| = 1, and by Claim I and Claim IV(ii) we have

dG−e0(u) = 6, dG−e0(u0) = 4, and dG−e0(v) = 5,∀v ∈ Y2 ∪ Y3 ∪ Y5.

Let |Y2| = t, where 0 ≤ t ≤ 3. Then we have |Y3| = 6 − 2t.
For Y1 = {u},

w(u) = −dG−e0(u) − 2
2 +

∑
f∈FG−e0 (u)

1
d(f)

≤ −6 − 2
2 + t

2 + 6 − t

3 = t

6 .

For each v ∈ Y2,

w(v) = −dG−e0(v) − 2
2 +

∑
f∈FG−e0 (v)

1
d(f)

≤ −5 − 2
2 + 1

2 + 4
3 = 1

3 .

For each v ∈ Y3,

w(v) = −dG−e0(v) − 2
2 +

∑
f∈FG−e0 (v)

1
d(f)

≤ −5 − 2
2 + 5

3 = 1
6 .

For Y4 = {u0}, the degree sequence of faces incident with u0 in G − e0 cannot be 
(3, 3, 3, 3); for otherwise, the vertex subset {u0} ∪NG−e0(u0) induces a W4, which con-
tradicts Claim II(i). Thus, at least one of these faces is of degree at least 4. So we have

w(u0) = −dG−e0(u0) − 2
2 +

∑
f∈FG−e0 (u0)

1
d(f)

≤ −4 − 2
2 + 1

4 + 3
3 = 1

4 .

Hence the total Euler contribution of Y1 ∪ Y2 ∪ Y3 ∪ Y4 is at most

t + 1
t + 1(6 − 2t) + 1 = 5 + t

.
6 3 6 4 4 6
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By Equation (1), the total Euler contribution of Y5 is at least

2 − (5
4 + t

6) = 3
4 − t

6 . (2)

For Y5, assume that a vertex v of Y5 is not the center of any Grötzsch Configuration. 
Then there are at most three 3-faces incident with v. Hence,

w(v) = −dG−e0(v) − 2
2 +

∑
f∈FG−e0 (v)

1
d(f) ≤ −5 − 2

2 + 2
4 + 3

3 = 0. (3)

For a vertex v ∈ Y5 as the center of a Grötzsch Configuration,

w(v) = −dG−e0(v) − 2
2 +

∑
f∈FG−e0 (v)

1
d(f) ≤ −5 − 2

2 + 5
3 = 1

6 . (4)

Hence, by Equations (2), (3) and (4), there are at least

�(3
4 − t

6)/1
6� = �9

2 − t� = 5 − t

Grötzsch Configurations with center in Y5. By the definition of good corner, there are 
at most 	 t

2
 Grötzsch Configurations without any good corner. Since 0 ≤ t ≤ 3, we have 
5 − t > 	 t

2
. Therefore, there exists a Grötzsch Configuration with a good corner. �
By Claim V, we may assume that x2 is a good corner of H and (H; x2) is a Grötzsch 

Configuration of G −e0. We assign labels e∗ and e∗∗ to the two edges in EG(x2) −EH(x2)
(see Fig. 1(b)).

Definition 5.2. Let G be a graph with an edge e0 for which G − e0 is a plane graph with 
(H; x2) as a Grötzsch Configuration. A Grötzsch Reduction of G with respect to (H; x2)
is a graph, denoted by G∗ = GR(G; H; x2), obtained as follows:
(1) Split the vertex x2 into a 2-vertex x1

2 and a 3-vertex x2
2 such that the edges incident 

with x1
2 in the new graph G0 are e∗ and e∗∗.

(2) Set E0 = {x3x4, xx4, xx5}, Y = {x, x1, x2
2, x3} and Z = {x4, x5}. By deleting all 

edges in E0, contracting E(G0[Y ]) to a new vertex y, and contracting E(G0[Z]) to a 
new vertex z, we obtain the graph G∗ = GR(G; H; x2) (see Fig. 1(c)).

Remark. In Definitions 5.1 and 5.2, it might be possible that the edge e0 in G is incident 
to xi where i ∈ {1, 2, 3, 4, 5}. In that case, G∗ = GR(G; H; x2), the Grötzsch Reduction 
of G with respect to (H; x2), contains the edge e0 which is incident to one of x1

2, y, z. It 
is also worth noting that, as it can be seen in the proofs of Claims VI and VII below, we 
always have dG∗(z) = dG∗(y) = 5, since μG(x1, x3) = 0 by Claim III and Lemma 3.7.
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Claim VI. Let G∗ be a Grötzsch Reduction of G with respect to (H; x2). Each of the 
following holds.
(i) G∗ is a connected nearly-planar graph with a handle-edge incident with u.
(ii) G∗ contains no 4−-edge-cut other than the 2-edge-cut [x1

2, V (G∗) − x1
2]G∗ .

Proof. (i) By the construction of G∗, G∗ is connected since G is 5-edge-connected and 
essentially 8-edge-connected. Moreover, by Observation 3.4(ii), we have that G∗ is a 
nearly-planar graph with a handle-edge incident with u since G0[Y ] and G0[Z] are both 
connected subgraphs of G − e0. This proves (i).

(ii) We now show that G∗ contains no 4−-edge-cut other than the 2-edge-cut 
[x1

2, V (G∗) −x1
2]G∗ . To the contrary, we suppose that G∗ contains a 4−-edge-cut [S, Sc]G∗

such that {x1
2} /∈ {S, Sc}. By Lemma 3.7, G − e0 contains no edge joining xi and xj if 

1 ≤ i < j ≤ 5, i + 1 �= j and i + 4 �= j, since G is 5-edge-connected essentially 8-edge-
connected. Recall that there is no edge parallel to e0 = uu0 in G and u /∈ V (H). By the 
construction of G∗, we have dG∗(x1

2) = 2, |NG∗(x1
2)| = 2, dG∗(u) = 7 and dG∗(v) = 5

for each v ∈ V (G∗) − {x1
2, u}. This implies that [S, Sc]G∗ is essential. Clearly, [S, Sc]G∗

separates the set {x1
2, y, z}. By symmetry, we only need to consider three cases as follows.

Case 1 x1
2 ∈ S and {y, z} ⊆ Sc.

Note that |S| ≥ 2. Suppose |S| = 2. Since x1
2 is not incident with parallel edges and 

dG∗(v) ≥ 5 for each v ∈ V (G∗) − {x1
2}, we have dG∗(S) ≥ 5, contrary to dG∗(S) ≤ 4. 

Assume instead that |S| ≥ 3. Let S1 = S −{x1
2}. It is clear that [S1, Sc

1]G is an essential 
edge-cut of G with dG(S1) ≤ dG∗(S) + |{e∗, e∗∗}| ≤ 6 by Observation 3.6, contrary to 
Claim III.

Case 2 z ∈ S and {x1
2, y} ⊆ Sc.

Let S1 = (S − {z}) ∪ {x4, x5}. Then by Observation 3.6, we have that [S1, Sc
1]G is an 

essential edge-cut of G with dG(S1) = dG∗(S) + |{x3x4, xx4, xx5}| ≤ 7, a contradiction 
again.

Case 3 y ∈ S and {x1
2, z} ⊆ Sc.

We first show that G∗[Sc] − e0 contains an (x1
2, z)-path. Suppose it does not, and 

assume that A1 and B1 are two disjoint subsets of Sc such that G∗[A1] and G∗[B1] are 
two components of G∗[Sc] − e0 with x1

2 ∈ A1 and z ∈ B1, as shown in Fig. 3. Suppose 
A1 = {x1

2}. Clearly, in G∗, there is an edge e joining x1
2 and a vertex in S. So we have

dG((B1 − {z}) ∪ {x4, x5}) ≤ dG∗(Sc) − |{e}| + |{x3x4, xx4, xx5}| + |{e0}| ≤ 7,

contrary to Claim III. Hence suppose |A1| ≥ 2. Then we have dG(A1 − {x1
2}) ≥ 5 and 

dG((B1 − {z}) ∪ {x4, x5}) ≥ 8 since G is 5-edge-connected and by Claim III, which 
contradicts dG(A1 −{x1

2}) + dG((B1 −{z}) ∪{x4, x5}) ≤ dG((Sc −{x1
2, z}) ∪{x4, x5}) +

2|{e0}| ≤ dG∗(Sc) + |{e∗, e∗∗, x3x4, xx4, xx5}| +2|{e0}| ≤ 11. Thus, G∗[Sc] − e0 contains 
an (x1

2, z)-path as claimed.
This implies that G[S1] − e0 contains an (x2, x4)-path or an (x2, x5)-path P , where 

S1 = (Sc − {x1
2, z}) ∪ {x2, x4, x5}. Note that x /∈ S1.
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Fig. 3. The edge-cut [S, Sc]G∗ of G∗.

Fig. 4. The edge-cut [S2, S
c
2 ]G of G.

Let S2 = (S − {y}) ∪ {x1, x3}. Clearly, S2 ∩ S1 = ∅, x /∈ S2 and dG(S2) =
dG∗(S) + |{x1x, x1x2, x3x2, x3x, x3x4}| ≤ 9, as shown in Fig. 4. So G[S2] is connected by 
Observation 3.6.

Second, we prove that G[S2] − e0 contains an (x1, x3)-path Q. Suppose it does not, 
and assume that A2 and B2 are two disjoint subsets of S2 such that G[A2] and G[B2]
are two components of G[S2] − e0 with x3 ∈ A2 and x1 ∈ B2. Since e0 �= x1x3, we have 
|A2| ≥ 2 or |B2| ≥ 2. WLOG, assume |A2| ≥ 2. It is clear that dG(A2) ≥ 8 by Claim III
and dG(B2) ≥ 5 since G is 5-edge-connected. This is a contradiction to the fact that 
dG(A2) + dG(B2) ≤ dG(S2) + 2|{e0}| ≤ 11. Hence, G[S2] − e0 contains an (x1, x3)-path 
Q.

Finally, we are now ready to derive a contradiction by planarity. Since S1 ∩ S2 = ∅
and x /∈ S1 ∪ S2, we conclude that P and Q are two vertex-disjoint paths not through 
the vertex x and the edge e0, contradicting the planarity of G − e0. See Fig. 5 for an 
illustration of paths P and Q. �
Claim VII. Any modulo 3-orientation D∗ of G∗ can be extended to a modulo 3-orientation 
D of G.
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Fig. 5. The paths P and Q in G − e0.

Fig. 6. Some orientations of the graph H − x4x5 in Claim VII.

Proof. Recall that the vertices and edges of G∗ are labeled as in Fig. 1(c). Let D′ be 
the restriction of D∗ on G. Clearly, every vertex in V (G) − V (H) is balanced modulo 3
in D′. We define β(v) ≡ d−D′(v) − d+

D′(v) (mod 3) for each v ∈ V (H). Then it suffices to 
prove that H has a β-orientation D′′ (that is, d+

D′′(v) − d−D′′(v) ≡ β(v) (mod 3) for each 
v ∈ V (H)). Note that we have

β(x2) ≡ β(x) ≡ 0 (mod 3),
β(x1) + β(x3) ≡ 0 (mod 3), and β(x4) + β(x5) ≡ 0 (mod 3).

There are up to nine cases by considering β(x1) ∈ {0, 1, 2} and β(x5) ∈ {0, 1, 2}. In 
Fig. 6, we demonstrate several orientations of H − x4x5, where we simply write (v : i)
for β(v) ≡ i (mod 3). By appropriately orienting x4x5, the orientation in Fig. 6(a) and 
its reverse provide such β-orientation for β(x1) = 0 and β(x5) ∈ {0, 1, 2}. Similarly, 
after appropriately orienting x4x5, the orientation in Fig. 6(b) and its reverse offer such 
β-orientation for β(x1) = 2 and β(x5) ∈ {0, 1} and for β(x1) = 1 and β(x5) ∈ {0, 2}. 
Moreover, after appropriately orienting x4x5, the orientation in Fig. 6(c) and its reverse 
give such β-orientation for β(x1) = 1 and β(x5) ∈ {0, 1} and for β(x1) = 2 and β(x5) ∈
{0, 2}. This verifies all those nine cases and proves Claim VII. �
5.3. The final step

Let G′′ be a nearly-planar graph obtained from G∗ by lifting e∗ = x1
2v1 and e∗∗ = x1

2v2, 
and deleting the vertex x1

2. It is clear that G′′ satisfies δ(G′′) ≥ 5 and any essential 
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4−-edge-cut of G′′ corresponds to an essential 4−-edge-cut of G∗. By Claim VI and 
Observation 3.3, we obtain that G′′ is a 5-edge-connected nearly-planar graph with a 
handle-edge incident with u. Then we have a new pre-orientation D′′

u on EG′′(u) by 
restricting Du on EG′′(u) and setting D′′

u(vjvi) = D(x2vi) if x2vi is pre-oriented in G for 
{i, j} = {1, 2}. The minimality of G implies that G′′ has an M3-extension of D′′

u. Thus, 
by Observation 3.3(iii) and Claim VII, we obtain that G∗ has an M3-extension of Du

and so does G, a contradiction. This completes the proof. �

6. Proof of Lemma 3.2 using Lemma 3.1

Finally, we are ready to finish the proof of Lemma 3.2, showing that every odd-5-
edge-connected nearly-planar graph admits a modulo 3-orientation.

Suppose that G is a counterexample to Lemma 3.2 chosen with |V (G)| + |E(G)|
minimal. If |V (G)| ≤ 2, then Lemma 3.2 holds trivially. Hence |V (G)| ≥ 3. Assume e0 =
uu0 is a handle-edge of G. Clearly, G is connected. Using Lemma 3.9 and Observation 3.4, 
with a similar argument as Claim II, we obtain that G is 2-connected and G contains 
no parallel edges. We embed the planar graph G − e0 in the plane and still use G − e0
to denote the planar embedding for notational convenience.

Next, we claim that G is 5-regular. For otherwise, there exists a vertex v with dG(v) �=
5. Similar as in Claim IV, we apply Lemma 4.1 to lift a pair of edges incident with v
in a way that keeps near-planarity and does not create loops. The obtained new nearly-
planar graph is denoted by G′. By Lemma 4.1, G′ has no 1- or 3-edge-cut, and so G′

has a modulo 3-orientation by the minimality of G. This implies that G has a modulo 
3-orientation by Observation 3.3(iii), a contradiction.

Then we show that G is 4-edge-connected. Suppose to the contrary that G contains 
an essential 2-edge-cut [S, Sc]G. WLOG, assume u ∈ S. Note that e0 /∈ G[Sc]. By 
Observation 3.4(ii), G/G[Sc] ∈ N . Since G is a minimal counterexample, we get a modulo 
3-orientation D1 of G/G[Sc]. Then, in G, we contract G[S] to a vertex u′. Since G[Sc]
is a planar graph and u′ has degree 2 in G/G[S], we have G/G[S] ∈ N . Hence, G/G[S]
has a modulo 3-orientation D2. Then either D1 and D2 agree along [S, Sc]G directly, or 
they agree after reversing all edge directions in D2. Thus, their union provides a modulo 
3-orientation of G, a contradiction.

By Lemma 3.1, G must contain an essential 4-edge-cut [S, Sc]G. WLOG, assume 
|Sc ∩ {u, u0}| ≥ 1. Let T ⊆ S be a minimal subset of V (G) such that [T, T c]G is an 
essential 4-edge-cut. Clearly, |T | ≥ 2 since G is 5-regular. By the minimality of T , for 
any proper subset T1 ⊂ T with |T1| ≥ 2, we have dG(T1) ≥ 5. Note that G[T ] and G[T c]
are both 2-edge-connected, since G is 4-edge-connected. Hence, by Observation 3.4(iii), 
G/G[T ] ∈ N and G/G[T c] ∈ N .

Since |Sc ∩ {u, u0}| ≥ 1 and T ⊆ S, we have |T c ∩ {u, u0}| ≥ 1. WLOG, assume 
u ∈ T c. The minimality of G implies that G/G[T ] has a modulo 3-orientation D1. 
Then we contract G[T c] to a vertex u′, and we assign a pre-orientation D′

u′ which is 
the restriction of D1 on G/G[T c]. By Observation 3.4(ii), G/G[T c] is a planar graph if 
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u0 ∈ T c and G/G[T c] is a nearly-planar graph with the handle edge e0 incident with u′

if u0 ∈ T . By replacing an oriented edge incident with u′ other than e0 by two oriented 
edges in the opposite direction, we obtain a new 5-edge-connected nearly-planar graph 
G′ and a new pre-orientation D′′

u′ from G/G[T c] and D′
u′ . By Lemma 3.1, G′ has an 

M3-extension of D′′
u′ . Thus, G/G[T c] has an M3-extension of D′

u′ and G has a modulo 
3-orientation, a contradiction. This completes the proof. �
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