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a b s t r a c t

A bridgeless graph G is called 3-flow-critical if it does not admit
a nowhere-zero 3-flow, but G/e has one for any e ∈ E(G).
Tutte’s 3-flow conjecture can be equivalently stated as that every
3-flow-critical graph contains a vertex of degree three. In this
paper, we study the structure and extreme size of 3-flow-critical
graphs. We apply structural properties to obtain lower and upper
bounds on the size of 3-flow-critical graphs, that is, for any
3-flow-critical graph G on n vertices,

8n − 2
5

≤ |E(G)| ≤ 4n − 10,

where each equality holds if and only if G is K4. We conjecture
that every 3-flow-critical graph on n ≥ 7 vertices has at most
3n−8 edges, which would be tight if true. For planar graphs, the
best possible upper bound for the size of 3-flow-critical graphs
on n vertices is 5n−8

2 , known from a result of Kostochka and
Yancey (2014) on vertex coloring 4-critical graphs by duality.

© 2021 Published by Elsevier Ltd.

1. Introduction

Graphs in this paper are finite and may contain parallel edges but no loops. We follow [1,14] for
ndefined notation and terminology. A vertex of degree k in a graph G is called a k-vertex. Denote
y Vk(G) (V≤k(G) and V≥k(G), respectively) the set of all vertices of degree k (at most k and at least
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Fig. 1. The graph K+

3,n−3 .

k, respectively) in G. Let nk(G) = |Vk(G)|, n≤k(G) = |V≤k(G)|, and n≥k(G) = |V≥k(G)|. If the graph G is
nderstood from context, we may use nk, n≤k, and n≥k for short, respectively.
Let D = D(G) be an orientation of a graph G. For a vertex pair (u, v), denote u → v if there is

n arc leaving u and entering v. For each v ∈ V (G), we use E+

D (v) and E−

D (v) to denote the set of all
rcs directed out of v and directed into v, respectively. An ordered pair (D, f ) is called an integer
low of G if D is an orientation and f is a mapping from E(G) to the integers such that every vertex

∈ V (G) is balanced, that is
∑

e∈E+

D (v) f (e) −
∑

e∈E−

D (v) f (e) = 0. An integer flow (D, f ) is called a
owhere-zero k-flow if 1 ≤ |f (e)| ≤ k − 1, ∀e ∈ E(G).
As observed by Tutte [12], flow and coloring are dual concepts: a plane graph G admits a

nowhere-zero k-flow if and only if the dual graph G∗ is k-colorable. A graph G is called vertex
coloring 4-critical if G is not 3-colorable but deleting any edge in G results in a 3-colorable graph.
Motivated by this, we define a bridgeless graph G to be 3-flow-critical if G admits no nowhere-zero
3-flow but G/e has a nowhere-zero 3-flow for each edge e ∈ E(G). Note that K2 contains a bridge
and thus is not considered as a 3-flow-critical graph.

The study of vertex coloring 4-critical graphs can be traced back to Dirac, Gallai and Ore in 1950s
and 1960s (see [6]). It follows from Turán’s Theorem that every 4-critical graph on n ≥ 5 vertices
has at most 1

3n
2 edges, since any such graphs contain no K4 as a subgraph. In [11], Toft constructed

4-critical graphs with more than 1
16n

2 edges, while the optimal value remains unknown as of today.
For the lower bound, resolving conjectures of Gallai and Ore on the density of 4-critical graphs,
Kostochka and Yancey [6,7] proved a tight bound that every 4-critical graph on n vertices has at least
5n−2

3 edges. By duality, their theorem shows the following result on 3-flow-critical planar graphs.

Theorem 1.1 (Kostochka and Yancey [6,7]). For any 3-flow-critical planar graph G on n vertices,

|E(G)| ≤
5
2
n − 4.

Moreover, the equality holds if and only if G is the dual of a planar 4-Ore graph.

A natural question is to ask what is the corresponding lower and upper bounds for nonplanar
graphs. It is easy to see that the upper bound 5

2n − 4 for planar graphs does not hold for general
graphs. One may verify that (see Proposition 2.6) the graph K+

3,n−3 (where n ≥ 6) in Fig. 1 is 3-flow-
ritical with 3n− 8 edges, where K+

3,n−3 denotes the graph obtained from complete bipartite graph
3,n−3 by adding a new edge between two vertices of degree n − 3.
In this paper, we provide linear lower and upper bounds on the size of any 3-flow-critical graph

n n vertices.

heorem 1.2. Let G be a 3-flow-critical graph on n vertices. Then
8n − 2

5
≤ |E(G)| ≤ 4n − 10,

nd each equality holds if and only if G ∼ K . Moreover, we have 8n+2
≤ |E(G)| ≤ 4n − 11 if G ≁ K .
= 4 5 = 4
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We suspect that the bounds in Theorem 1.2 are not optimal in general. The dual of a construction
f Yao and Zhou [13] on 4-critical planar graphs shows that there exist 3-flow-critical planar
raphs on n vertices with 7n−1

4 edges (see Theorem 4.1). However, determining the best possible
lower bound on the size of 3-flow-critical planar graphs, or equivalently the highest density of
4-critical planar graphs, is a long-standing open problem (see [13]). It seems much more difficult
for the best lower bound on the size of general nonplanar 3-flow-critical graphs, and we are even
unclear about the candidate value. On the other hand, there are many rich families of 3-flow-critical
graphs that we can construct by developing a 2-sum operation in Section 4. Specifically, from some
known results, we are able to construct 3-flow-critical graphs on n vertices with size roughly rn
or 7

4 < r < 3. Any 3-flow-critical graphs that we can construct seem to be sparser than the graph
+

3,n−3. Thus we suggest the following conjecture concerning the tight upper bound.

onjecture 1.3. For any 3-flow-critical graph G on n ≥ 7 vertices,

|E(G)| ≤ 3n − 8.

Perhaps K+

3,n−3 is the only extreme graph to attain this bound when n is large. At least, it is true
f n3(G) ≥ n − 3, as shown in Proposition 2.7 in Section 2.

Tutte’s 3-flow conjecture (see Unsolved Problems #97 in [1]) asserts that every 4-edge-connected
graph admits a nowhere-zero 3-flow. The density argument, even if Conjecture 1.3 was proved,
cannot derive the 3-flow conjecture. We propose a stronger conjecture below, which, if true, implies
the 3-flow conjecture.

Conjecture 1.4. For any 3-flow-critical graph G on n vertices,

|E(G)| <
5
2
n + n3.

Note that K+

3,n−3 satisfies Conjecture 1.4 since it has many 3-vertices. There is another family of
-flow-critical graphs on 2k + 2 vertices, constructed from 2-sum of K4’s (this 2-sum operation is
efined in Definition 4.2), which contains four 3-vertices and 2k − 2 5-vertices, approaching the

bound in Conjecture 1.4. To support Conjecture 1.4, we provide the following result.

Theorem 1.5. For any 3-flow-critical graph G on n vertices,

|E(G)| <
5
2
n + 9n≤8.

The rest of the paper is organized as follows. In Section 2, we introduce a few basic notation and
terminology, and then investigate structures of 3-flow-critical graphs to prove the lower bound in
Theorem 1.2. In Section 3, we complete the proof of the upper bound in Theorem 1.2 as well as the
proof of Theorem 1.5. Finally, we develop some operations to construct 3-flow-critical graphs with
density between 7

4 and 3 in Section 4.

. Properties of 3-flow-critical graphs

For vertex subsets U,W ⊆ V (G), let [U,W ]G = {uw ∈ E(G)|u ∈ U, w ∈ W }. When U = {u} or
= {w}, we use [u,W ]G or [U, w]G for [U,W ]G, respectively. The subgraph of G induced by U is

enoted by G[U]. For any subset S ⊆ V (G), we denote Sc = V (G) \ S and set dG(S) = |[S, Sc]G|. An
edge cut [S, Sc]G is called essential if there are at least two nontrivial components in G − [S, Sc]G.
A graph is called essentially k-edge-connected if it contains no essential edge cut with less than k
edges. When there is no scope for ambiguity, the subscript G may be omitted. Contracting an edge
of a graph means to identify its two endpoints and then delete the resulting loops. For an edge
e ∈ E(G) and a subgraph H of G, we write G/e to denote the graph obtained from G by contracting
e, and denote by G/H the graph obtained from G by successively contracting the edges of E(H).

Let d+

D (v) = |E+

D (v)| and d−

D (v) = |E−

D (v)| denote the out-degree and the in-degree of v under
the orientation D, respectively. Let Z be the set of integers modulo n. A function β: V (G) → Z is a
n 3

3
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Z3-boundary if
∑

v∈V (G) β(v) ≡ 0 (mod 3). For a given Z3-boundary β , a β-orientation is an
rientation D of G such that d+

D (v) − d−

D (v) ≡ β(v) (mod 3) for each v ∈ V (G). Especially, a
odulo 3-orientation of G is a β-orientation with β(v) ≡ 0 (mod 3) for each v ∈ V (G). We call
graph G Z3-connected if for any Z3-boundary β of G, there exists a β-orientation of G. A graph

s called Z3-irreducible if it does not contain any nontrivial Z3-connected subgraphs. It is well-
nown that a graph admits a nowhere-zero 3-flow if and only if it admits a modulo 3-orientation
see [14]). Therefore, in the rest of this paper we will study nowhere-zero 3-flows in terms of
odulo 3-orientations.
A useful method to prove Z3-connectedness is the following lemma.

Lemma 2.1 (Lai [8]). Let G be a graph, and let H ⊆ G be a subgraph of G.
(i) If H is Z3-connected and G/H has a modulo 3-orientation, then G has a modulo 3-orientation.
(ii) If both H and G/H are Z3-connected, then G is also Z3-connected.
(iii) The graph 2K2 is Z3-connected, where 2K2 consists of two vertices and two parallel edges.

A wheel graph Wk is constructed by adding a new center vertex connecting to each vertex of a
k-cycle, where k ≥ 3. A wheel Wk is odd if k is odd, and even otherwise.

Lemma 2.2 (DeVos, Xu, Yu [2]). A wheel Wk is Z3-connected if and only if k is even. Furthermore, each
odd wheel does not admit a nowhere-zero 3-flow.

As an example, it is an easy exercise to verify that each odd wheel is 3-flow-critical by
Lemmas 2.1 and 2.2. The following observation about modulo 3-orientations will be useful in later
proofs.

Observation 2.3. Let G be a graph with a modulo 3-orientation D. Assume V3(G) ≠ ∅, and let
P = x1x2 . . . xt be a path of G[V3]. Then each of the following holds.

(i) The number t is odd if and only if d+

D (x1) = d+

D (xt ) ∈ {0, 3}.
(ii) The number t is even if and only if d+

D (x1) = d−

D (xt ) ∈ {0, 3}.

Our first result of this section is the following fundamental structural properties of 3-flow-critical
graphs.

Theorem 2.4. Let G be a 3-flow-critical graph. Then each of the following holds.
(i) For any e ∈ E(G), G − e admits a nowhere-zero 3-flow.
(ii) G is 3-edge-connected and essentially 4-edge-connected.
(iii) G is Z3-irreducible.
(iv) G[V3] contains no cycle, unless G is an odd wheel.

Proof. (i) Let e = uv ∈ E(G), and let D be a modulo 3-orientation of G/e. Let D∗ be the restriction of
D on G−e. By arbitrarily orienting each edge in E(G−e)\E(G/e) (if any), we obtain an orientation D′

of G−e. If D′ is not a modulo 3-orientation of G−e, then either d+

D′ (u)−d−

D′ (u) ≡ d−

D′ (v)−d+

D′ (v) ≡ 1
(mod 3) or d+

D′ (u) − d−

D′ (u) ≡ d−

D′ (v) − d+

D′ (v) ≡ −1 (mod 3). So D′ can be extended to a modulo
3-orientation of G by letting v → u or u → v, a contradiction. Hence D′ is a modulo 3-orientation
of G − e.

(ii) By (i), we have δ(G) ≥ 3. Suppose to the contrary that G contains an edge cut [S, Sc]G such
that 2 ≤ d(S) ≤ 3, |E(G[S])| ≥ 1 and |E(G[Sc])| ≥ 1. Assume e1 ∈ E(G[S]) and e2 ∈ E(G[Sc]). By
definition, G/e1 admits a modulo 3-orientation D′. Then the restriction of D′ to G/G[S], say D1, is
a modulo 3-orientation. Similarly, G/G[Sc] has a modulo 3-orientation D2. Then either D1 and D2
agree along [S, Sc]G directly, or they agree after reversing all edge directions in D2. Thus, their union
provides a modulo 3-orientation of G, a contradiction. Hence G is 3-edge-connected and essentially
4-edge-connected.

(iii) Suppose that H is a nontrivial Z3-connected subgraph of G. Let u1v1 ∈ E(H). By (i),
G − u1v1 admits a modulo 3-orientation D1. Thus the restriction D′ of D1 to G/H is also a modulo

3-orientation. By Lemma 2.1, G has a modulo 3-orientation, a contradiction. So G is Z3-irreducible.

4
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(iv) Suppose, by contradiction, that G is not an odd wheel and G[V3] contains a cycle. Assume
= v1v2 . . . vtv1 is a cycle with the minimum length in G[V3]. Note that C is an induced subgraph

of G. Let ui be the neighbor of vi which is not on C and let ei = uivi.
First, suppose t is even. By (i), G−e1 admits a modulo 3-orientation D′. It implies that d+

D′ (vi) = 3
or d−

D′ (vi) = 3 for each i ∈ {2, 3, . . . , t}. Since t is even, by Observation 2.3(i), we have d+

D′ (v2) =

d+

D′ (vt ) = 3 or d−

D′ (v2) = d−

D′ (vt ) = 3, which implies that d−

D′ (v1) = 2 or d+

D′ (v1) = 2. So v1 is not
balanced in D′. This leads to a contradiction.

Next, suppose t is odd. If there exists an edge e that is not incident to any vertex on C , then by
(i), G − e admits a modulo 3-orientation D′. It implies that d+

D′ (vi) = 3 or d−

D′ (vi) = 3 for each
i ∈ {1, 2, . . . , t}. Since t is odd, by Observation 2.3(ii), we have either d+

D′ (v2) = d−

D′ (vt ) = 3
or d−

D′ (v2) = d+

D′ (vt ) = 3, which implies that v1 is not balanced in D′, a contradiction. Hence
we suppose E(G) = E(C) ∪ {e1, e2, . . . , et}. Since G is not an odd wheel, there exists an index
j ∈ {1, 2, . . . , t −1} such that uj ≠ uj+1. By (i), G− ej admits a modulo 3-orientation Dj and G− ej+1
admits a modulo 3-orientation Dj+1, respectively. Without loss of generality, assume vj−1 → vj in
Dj. Then we have vj → vj+1 and uj+1 → vj+1 in Dj. Similarly, WLOG, assume vj−1 → vj in Dj+1.
Then we get vj+1 → vj and uj → vj in Dj+1. Besides, we have d+

Dj
(vj−1) = d+

Dj+1
(vj−1) = 3 and so,

y Observation 2.3(i)(ii), d+

Dj
(v) = d+

Dj+1
(v) and d−

Dj
(v) = d−

Dj+1
(v) for each v ∈ V (C) \ {vj, vj+1}. This

mplies that the direction of e in Dj+1 is the same as that in Dj for each e ∈ E(G) \ {ej, ej+1, vjvj+1}.
hus we have d+

Dj
(uj) = d+

Dj+1
(uj) − 1 and d−

Dj
(uj) = d−

Dj+1
(uj), which implies that uj is not balanced

n Dj+1 since it is balanced in Dj, a contradiction again. ■

Kochol [4,5] obtained two equivalent statements of Tutte’s 3-flow conjecture as follows: (i)
very 5-edge-connected graph admits a nowhere-zero 3-flow, (ii) every bridgeless graph with at
ost three edge cuts of size three admits a nowhere-zero 3-flow. By Theorem 2.4, the results of
ochol [4,5] can be restated as certain properties of 3-flow-critical graphs.

heorem 2.5 (Kochol [4,5]). Tutte’s 3-flow conjecture is equivalent to each of the following statements.
(a) Every 3-flow-critical graph contains a vertex of degree 3.
(b) Every 3-flow-critical graph contains a vertex of degree at most 4.
(c) |V3(G)| ≥ 4 for every 3-flow-critical graph G.

It is proved in [3] that every Z3-irreducible graph has a vertex of degree at most 5, and so,
ombining Theorem 2.4(iii), it implies that every 3-flow-critical graph contains a vertex of degree
t most 5.
Theorem 2.5 may suggest that some better structure properties of 3-flow-critical graphs could

ring new ideas in solving Tutte’s 3-flow conjecture. In particular, Theorem 2.5(b) shows that
onjecture 1.4 implies Tutte’s 3-flow conjecture.
Next, we show in detail that K+

3,n−3 is a 3-flow-critical graph and that Conjecture 1.3 holds for
ny 3-flow-critical graph G on n vertices with n3 ≥ n − 3 ≥ 6.

roposition 2.6. For any n ≥ 6, the graph K+

3,n−3 is a 3-flow-critical graph with 3n − 8 edges.

roof. It is easy to check that K+

3,n−3 has 3n− 8 edges. So it remains to show that K+

3,n−3 is 3-flow-
ritical. We use the notation in Fig. 1 to label the vertices of K+

3,n−3, and let X = {x1, x2, x3} and
= {y1, y2, . . . , yn−3}. To the contrary, suppose K+

3,n−3 admits a modulo 3-orientation D. Since all
ertices in Y are 3-vertices, we have d+

D (yi) = 3 or d−

D (yi) = 3 for each yi ∈ Y . It is easy to check
hat d+

D (x1) − d−

D (x1) ≢ 0 (mod 3) if d+

D (x3) − d−

D (x3) ≡ 0 (mod 3), since x1 has an extra neighbor
2. Hence K+

3,n−3 does not admit a modulo 3-orientation. For any e ∈ E(K+

3,n−3), in order to show
hat G′

= K+

3,n−3/e has a modulo 3-orientation, it is sufficient to prove that G′′
= K+

3,n−3 − e has a
odulo 3-orientation.
We firstly give a special orientation of the complete bipartite graph K3,t−3 with t ≥ 5. Let

= {x1, x2, x3} and Y = {y1, y2, . . . , yt−3} be the two parts of K3,t−3. Assign to each edge incident
o x1 a direction such that d+(x1)−d−(x1) ≡ k (mod 3). Assign directions to the remain edges such
hat d+(v) − d−(v) ≡ 0 (mod 3) for each v ∈ Y . Then we obtain an orientation D(k) of K such
3,t−3

5
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Fig. 2. A 3-flow-critical graph H on 8 vertices with 16 edges.

that d+

D(k)(u) − d−

D(k)(u) ≡ k (mod 3) for each u ∈ X , and d+

D(k)(v) − d−

D(k)(v) ≡ 0 (mod 3) for each
v ∈ Y .

Now, by symmetry, it suffices to consider three cases e = x1x2, e = x1y1, and e = x3y1. If
e = x1x2, then G′′ ∼= K3,n−3. So G′′ has a modulo 3-orientation D(k) with k = 0. If e = x1y1, then
G1 = G′′

− y1 − {x1x2} is isomorphic to K3,n−4. So G1 has an orientation D(k) with k = 1. With the
restriction of D(1) on G′′, we obtain a modulo 3-orientation of G′′ by assigning x2 → x1, x2 → y1 and
y1 → x3. If e = x3y1, then G1 = G′′

− y1 − {x1x2} is isomorphic to K3,n−4. So G1 has an orientation
D(k) with k = 0. With the restriction of D(0) on G′′, we obtain a modulo 3-orientation of G′′ by
assigning x1 → x2, x2 → y1 and y1 → x1.

Thus, for all cases above, we can obtain a modulo 3-orientation of G′′. Hence we conclude that
K+

3,n−3 is 3-flow-critical. ■

Proposition 2.7. Let G be a 3-flow-critical graph on n ≥ 9 vertices. If n3 ≥ n − 3, then

|E(G)| ≤ 3n − 8.

Moreover, the equality holds if and only if G ∼= K+

3,n−3.

Proof. By Lemma 2.1 and Theorem 2.4(iii), G contains no parallel edges. Let t denote the number
of components of G[V3]. We consider three cases in the following. Firstly, suppose n3 ≥ n − 1.
By Theorem 2.4(iv), the graph G is an odd wheel and |E(G)| ≤ 2n − 2, which is less than 3n − 8
when n ≥ 9. Then suppose n3 = n − 2. By Theorem 2.4(iv), we know G[V3] is a forest, and hence
|E(G)| = |E(G[V3])|+|[V3, V≥4]|+|E(G[V≥4])| ≤ (n−2− t)+ (3(n−2)−2(n−2− t))+1 = 2n+ t−3.
Since G has no parallel edges and G[V3] has no isolated vertex, we obtain t ≤ ⌊

n−2
2 ⌋, which implies

E(G)| < 3n − 8 by n ≥ 9.
Finally, suppose n3 = n − 3. Let i = |E(G[V≥4])| and V≥4 = {u1, u2, u3}. Then t ≤ n − 3 and

≤ i ≤ 3. So we have |E(G)| ≤ (n − 3 − t) + (3(n − 3) − 2(n − 3 − t)) + i = 2n + t + i − 6. If
+ i ≤ n− 3, then |E(G)| ≤ 3n− 9. Now we consider the case t + i ≥ n− 2, whereas i ≥ 1. If i = 1,
hen t = n−3 and G = K+

3,n−3. If 2 ≤ i ≤ 3, then t ≥ n−5 and we assume {u1u2, u2u3} ⊆ E(G[V≥4])
y symmetry. Let k be the number of isolated vertices of G[V3]. We have k+ 2(t − k) ≤ n3 = n− 3
nd then n ≤ 7+ k since t ≥ n−5. Hence we obtain k ≥ 2 since n ≥ 9. Now assume that v1 and v2
re two isolated vertices of G[V3]. We use H to denote the graph induced by {v1, v2, u1, u2, u3}. Let
′
= H if u1u3 /∈ E(G) and H ′

= H − u1u3 if u1u3 ∈ E(G). So H ′ is a wheel W4 and is Z3-connected
y Lemma 2.2, which contradicts Theorem 2.4(iii). Hence K+

3,n−3 is the only extreme graph to attain
he bound. ■

Note that the condition |V (G)| ≥ 9 in Proposition 2.7 is necessary, as there is another
-flow-critical graph H on 8 vertices with |E(H)| = 3|V (H)| − 8 = 16, which is shown in Fig. 2.
Next we apply Theorem 2.4 and a counting argument to obtain the lower bound in Theorem 1.2.

ince for an odd wheel Wn−1 we have |E(Wn−1)| = 2n − 2 ≥
8n+2

5 if n ≥ 6, it suffices to prove the
following proposition.
6
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Proposition 2.8. For any 3-flow-critical graph G on n vertices other than an odd wheel,

|E(G)| ≥
8n + 2

5
.

roof. We double-count the number of edges in [V3, V c
3 ].

On one hand, by Theorem 2.4(iv), G[V3] is acyclic, hence |E(G[V3])| ≤ n3 − 1. Thus,

d(V3) = 3n3 − 2|E(G[V3])| ≥ 3n3 − 2(n3 − 1) = n3 + 2, (1)

ith equality only if G[V3] is a tree.
On the other hand, counting the edges with respect to their endpoints in V c

3 , we have that

d(V3) =

∑
k≥4

knk − 2|E(G[V≥4])| ≤

∑
k≥4

knk =

∑
k≥3

knk − 3n3 = 2|E(G)| − 3n3, (2)

ith equality only if V≥4 is an independent set.
From (1) and (2) we conclude that

|E(G)| ≥ 2n3 + 1, (3)

ith equality only if G[V3] is a tree and V≥4 is an independent set. Moreover, we have∑
k≥4

knk ≥ 4
∑
k≥4

nk, (4)

ith equality only if n≥5 = 0.
Thus, we have

5|E(G)| = 4|E(G)| + |E(G)| ≥ 2
∑
k≥3

knk + 2n3 + 1 = 8n3 + 2
∑
k≥4

knk + 1 ≥ 8n + 1, (5)

ith equality only if G[V3] is a tree and V≥4 = V4 is an independent set.
To obtain the bound 8n+2

5 in the theorem, we shall show that |E(G)| ≠
8n+1

5 below. Suppose to the
ontrary that |E(G)| =

8n+1
5 . From (5) we have that G[V3] is a tree and V≥4 = V4 is an independent

et. Let x1 be a leaf vertex of the tree G[V3], and let y be a neighbor of x1 with degree 4. Suppose the
neighbors of y are x1, x2, x3, x4, where xi ∈ V3 for each i ∈ {1, 2, 3, 4}. Since G[V3] is a tree, there
is a unique path, say Pij, connecting the vertices xi and xj in G[V3]. Then by symmetry, we consider
two cases as follows.

Case 1. x2 ∈ V (P13) but x4 /∈ V (P13).
Let G′

= G − yx4. Since G is 3-flow-critical, by Theorem 2.4(i), we have that G′ admits a modulo
3-orientation D′. This implies that d+

D′ (y) = 3 or d−

D′ (y) = 3. Thus |V (P13)| is odd by Observation 2.3(i).
Let G′′

= G−yx2. By Theorem 2.4(i), G′′ has a modulo 3-orientation D′′, and then we have d+

D′′ (y) = 3
or d−

D′′ (y) = 3. However, the edges yx1 and yx3 must have opposite directions in D′′ since |V (P13)| is
odd and dG′′ (x2) = 2, i.e., y → x1 if x3 → y and y → x3 if x1 → y. This is a contradiction.

Case 2. xi /∈ V (P1j) for any {i, j} ⊆ {2, 3, 4}.
By Observation 2.3(i), similar as Case 1, we know that |V (P1j)| is an odd number for each

j ∈ {2, 3, 4}. Since x1 is a leaf of the tree G[V3], there is a neighbor z of x1 such that z ≠ y and
z ∈ V4. Let G′

= G − zx1. Since G is 3-flow-critical, G′ admits a modulo 3-orientation D′. Since
|V (P1j)| is odd for each j ∈ {2, 3, 4}, we have that the edges yx2, yx3 and yx4 are all leaving or all
entering y in D′. It implies that d+

D′ (y) ≥ 3 or d−

D′ (y) ≥ 3. Then we obtain d+

D′ (y)−d−

D′ (y) ≢ 0 (mod 3)
since dG′ (y) = 4, a contradiction again. ■

3. Upper bounds and Z3-irreducible graphs

In this section, we develop a method to prove an upper bound on the number of edges of
3-flow-critical graphs, which is tight for K4. We start with a definition on the weight of a partition
of the vertex-set of a graph.
7
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4

Definition 3.1. Let P = {X1, X2, . . . , Xt} be a partition of V (G). Define

ρG(P) =

t∑
i=1

dG(Xi) − 8t + 20

and

ρ(G) = min{ρG(P) : P is a partition of V (G)}.

For a graph G with few vertices, it is easy to determine ρ(G). For example, ρ(K2) = 6, ρ(2K1) =

, ρ(K3) = 2, ρ(P3) = 0, and ρ(K4) = 0, where 2K1 is an empty graph on 2 vertices. Note that for
these graphs, ρ(G) is attained only by the trivial partition, which is a partition with exact one vertex
in each part.

For a partition P = {X1, X2, . . . , Xt} of V (G), let G/P be the graph obtained by identifying all
vertices in each Xi to form a new vertex xi. We say a graph G is Z3-reduced to a graph H if H is
obtained from G by contracting all its Z3-connected subgraphs consecutively. In other words, there
exists a partition P = {X1, X2, . . . , Xt} of V (G) such that G/P = H and G[Xi] is Z3-connected for
each i ≤ t (possibly G[Xi] = K1).

Proposition 3.2. Let P = {X1, X2, . . . , Xt} be a partition of V (G) with |X1| ≥ 2. Let H = G[X1] and
let Q be a partition of X1. Then we have

ρH (Q) = ρG(Q ∪ (P \ {X1})) − ρG(P) + 12.

Proof. Denote Q = {Y1, Y2, . . . , Ys} in H = G[X1]. Then we have

ρG(Q ∪ (P \ {X1})) =

s∑
j=1

dG(Yj) +

t∑
i=2

dG(Xi) − 8(s + t − 1) + 20

= [

s∑
j=1

dG(Yj) − dG(X1) − 8s + 20] + [

t∑
i=1

dG(Xi) − 8(t − 1)]

= ρH (Q) + ρG(P) − 12.

Hence ρH (Q) = ρG(Q ∪ (P \ {X1})) − ρG(P) + 12. ■

Indeed, Proposition 3.2 has a very important consequence to be used below.

Corollary 3.3. Let P = {X1, X2, . . . , Xt} be a partition of V (G) with |X1| ≥ 2 such that ρ(G) = ρG(P).
Denote H = G[X1]. Then, ρ(H) ≥ 12.

Proof. Let Q be a partition of H = G[X1]. Then, by Proposition 3.2 we have

ρ(G) ≤ ρG(Q ∪ (P \ {X1})) = ρH (Q) + ρG(P) − 12 = ρH (Q) + ρ(G) − 12,

and so ρH (Q) ≥ 12. This is true for each partition Q of H , and thus ρ(H) ≥ 12. ■

The main result of this section is the following theorem.

Theorem 3.4. Let G = {K2, K3, P3, K4}. Let G be a connected graph with ρ(G) ≥ 0. Then either
(i) G is Z3-connected, or
(ii) G can be Z3-reduced to a graph in G.

Proof. Assume, by way of contradiction, the result is false and study a minimal counterexample
G with respect to |V (G)| + |E(G)|. That is, G is not Z3-connected and G cannot be Z3-reduced to a
graph in G. We first present some preliminary reductions on G.

Claim 1. G is Z3-irreducible and |V (G)| ≥ 7. In particular, G contains no parallel edges.
8
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Proof. Suppose to the contrary that there exists a subgraph H of G such that H is Z3-connected,
here |V (H)| > 1. Clearly, G/H is connected and ρ(G/H) ≥ ρ(G) ≥ 0. Since G is a minimal
ounterexample, we consider two cases as follows. If G/H is Z3-connected, then by Lemma 2.1,
is Z3-connected, a contradiction. If G/H can be Z3-reduced to a graph in G, then by definition
is Z3-reduced to a graph in G. Each case leads to a contradiction. Hence G is Z3-irreducible and

ontains no nontrivial Z3-connected subgraph. Since 2K2 is Z3-connected, G contains no parallel
dges.
Clearly, we have |V (G)| ≥ 3. It is routine to verify that |V (G)| ≥ 7 by some case analysis, but we

hall apply a basic fact in [9] to accomplish this work. By Lemma 2.10 in [9], when n = 3, 4, 5, 6,
ny Z3-irreducible graph on n vertices contain at most 3, 6, 8, 11 edges, respectively. As ρ(G) ≥ 0, G
ontains at least 2, 6, 10, 14 edges when |V (G)| = 3, 4, 5, 6, respectively. Thus either G ∈ {K3, P3, K4}

r G is not Z3-irreducible, a contradiction. This shows |V (G)| ≥ 7. ■

laim 2. Let H be a proper subgraph of G with |V (H)| > 1. Assume that ρH (Q) ≥ 7 for any nontrivial
artition Q of H. Let Q0 denote the trivial partition of H. Then each of the following holds.
i) The trivial partition Q0 of H satisfies ρH (Q0) ≤ 6.
ii) If ρH (Q0) ≥ 1, then H ∈ {2K1, K2, K3}.

roof. Since G is a minimal counterexample to Theorem 3.4, the theorem is applied for its proper
ubgraph H . Assume that |V (H)| ≥ 3 and the trivial partition Q0 of H satisfies ρH (Q0) ≥ 0. If H is
ot connected, then there exists a nontrivial partition Q′ such that ρH (Q′) = 0 − 8 · 2 + 20 = 4, a
ontradiction. Hence H is connected. Then Theorem 3.4 implies that either H is Z3-connected, or H
an be Z3-reduced to a graph in G. As G is Z3-irreducible, H and any nontrivial subgraph of H are
ot Z3-connected. Hence, the Z3-reduction of H is itself. So Theorem 3.4 implies that H ∈ G. Note
hat H ∈ {K2, 2K1} if |V (H)| = 2.

(i) Suppose to the contrary that ρH (Q0) ≥ 7 for the trivial partition Q0 of H . Then we have
(H) ≥ 7. It implies H /∈ G ∪ {2K1}, a contradiction.
(ii) We have that ρH (Q0) ≥ 1 implies H /∈ {P3, K4}, and so H ∈ {2K1, K2, K3}. ■

For a partition P of V (G), we set

r(P) = |{X ∈ P : |X |≥ 2}|,

nd let

r0(P) = 1 if max{|X | : X ∈ P} ≥ 4, and r0(P) = 0 otherwise.

laim 3. Let P be a nontrivial partition of V (G). Then we have
i) ρG(P) ≥ 6, and
ii) ρG(P) ≥ 12 if r(P) + r0(P) ≥ 2.

roof. Let P = {X1, X2, . . . , Xt}. If t = 1, then it is easy to verify ρG(P) = 12. So we assume t ≥ 2
nd |X1| > 1. Let H = G[X1].
(i) Suppose to the contrary that ρG(P) ≤ 5. Then for any partition Q of H , we have ρH (Q) =

G(Q ∪ (P \ {X1})) − ρG(P) + 12 ≥ 7 by Proposition 3.2, and since ρ(G) ≥ 0 by assumption,
ontradicting to Claim 2(i).
(ii) We first show that ρG(P) ≥ 12 if P is a partition with |X1| > 1 and |X2| > 1. Suppose to the

ontrary that ρG(P) ≤ 11. Since |X2| > 1, for every partition Q of H , the partition Q ∪ (P \ {X1}) is
nontrivial partition of G. So ρG(Q ∪ (P \ {X1})) ≥ 6 by (i). Then we have

ρH (Q) = ρG(Q ∪ (P \ {X1})) − ρG(P) + 12 ≥ 6 − 11 + 12 = 7

or any partition Q of H by Proposition 3.2, contradicting to Claim 2(i).
Now, as r(P) + r0(P) ≥ 2, it suffices to prove that ρG(P) ≥ 12 when |X1| ≥ 4 and |Xi| = 1 for

ach i ∈ {2, 3, . . . , t}. Suppose to the contrary that ρG(P) ≤ 11. By Proposition 3.2 and by (i), we
ave ρH (Q) ≥ 0− 11+ 12 = 1 for any partition Q of H , and additionally, ρH (Q) ≥ 6− 11+ 12 = 7

or any nontrivial partition Q of H . Thus H ∈ {2K1, K2, K3} by Claim 2(ii), a contradiction. ■

9
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Claim 4. For any nonempty vertex subset S ⊊ V (G),
(i) we have d(S) ≥ 4. That is, G is 4-edge-connected.
(ii) If neither S nor Sc is trivial, then d(S) ≥ 7. That is, G is essentially 7-edge-connected.

roof. It is obvious that P = {S, Sc} is a partition of V (G).
(i) Since |V (G)| ≥ 7, r(P) ≥ 1 and r0(P) = 1. By Claim 3(ii), we have that 12 ≤ ρG(P) =

d(S) − 16 + 20, which yields d(S) ≥ 4. This implies that G is 4-edge-connected.
(ii) It is sufficient to prove that if neither S nor Sc is trivial, then ρG(P) ≥ 18. It is clear

hat if ρG(P) ≥ 18, then we have d(S) ≥ 7 by ρG(P) = 2d(S) − 16 + 20. Now let us prove
ρG(P) ≥ 18. By contradiction, suppose ρG(P) ≤ 17. Since |V (G)| ≥ 7, by symmetry, we assume
|Sc | ≥ 4. Let H = G[S]. For any partition Q of H , we denote P ′

= Q ∪ (P \ {S}). Then we
have r(P ′) ≥ 1 and r0(P ′) = 1. Thus, by Claim 3(ii), ρG(P ′) ≥ 12. By Proposition 3.2, we have
ρH (Q) = ρG(P ′) − ρG(P) + 12 ≥ 12 − 17 + 12 = 7 for any partition Q of H , a contradiction to
Claim 2(i). This proves (ii). ■

Next we introduce a few more tools in order to complete the proof of Theorem 3.4. We will make
use of a splitting operation as described in the following lemma, which preserves Z3-connectivity
of the graph.

Lemma 3.5 (Lemma 4.1 of [3]). Let G be a graph and let z be a vertex of G with degree at least 4 and
zv1, zv2 ∈ EG(z). If G′

= G − z + v1v2 is Z3-connected, then G is Z3-connected.

Another key result is the following theorem due to Lovász, Thomassen, Wu and Zhang [10].

Theorem 3.6 (Lovász et al. [10]). Every 6-edge-connected graph is Z3-connected.

Now we are ready to finish the proof. By Claim 4(ii), each nontrivial edge cut of G has size at
least 7. But G is not 6-edge-connected by Theorem 3.6. Hence the minimal degree of G is at most
5. Let z be a vertex in G of minimum degree. Then by Claim 4(i) we have

4 ≤ dG(z) ≤ 5.

Our main strategy below is to show that by Claim 4 it is always possible to select zv1, zv2 ∈ EG(z)
such that the modified graph G′

= G− z+v1v2 still satisfies the condition of Theorem 3.4. Then the
minimality of G and Theorem 3.4 would imply that G′ is Z3-connected. Hence, G is Z3-connected
by Lemma 3.5, a contradiction to Claim 1.

Claim 5. Let zv1, zv2 ∈ EG(z) and let G′
= G − z + v1v2. Then G′ is 4-edge-connected.

Proof. Let S be a nonempty proper subset of V (G′). We shall prove that dG′ (S) ≥ 4. By Claim 1, G has
no parallel edges and so |NG(z)| = dG(z). As |NG(z)| ≤ 5, we may adjust notation, by interchanging
S with Sc if necessary, so that |S ∩ NG(z)| ≤ 2. Then, dG′ (S) ≥ dG(S) − |S ∩ NG(z)|. If dG(S) ≥ 7,
then dG′ (S) ≥ 5. We may thus assume that dG(S) < 7. By Claim 4(ii), one of S and Sc is trivial. As
|Sc ∩ NG(z)| = |NG(z)|−|S ∩ NG(z)| ≥ 2, we deduce that |S| = 1. Let v be the vertex of S, i.e. S = {v}.
If v /∈ NG(z), then dG′ (v) = dG(v) ≥ 4. Hence assume v ∈ NG(z). Now let us prove that dG(v) ≥ 5. This
fact is clear when δ(G) = 5. We may thus assume that δ(G) = 4 and so dG(z) = 4. Let Y = {v, z}.
By Claim 4(ii), it follows that 7 ≤ dG(Y ) = dG(z) + dG(v) − 2 = 2 + dG(v), and so dG(v) ≥ 5. In both
ases above, we deduce that dG(v) ≥ 5, which implies dG′ (v) ≥ dG(v) − 1 ≥ 4.
We conclude that dG′ (S) ≥ 4. This conclusion holds for every nonempty proper subset S of V (G′),

nd hence G′ is 4-edge-connected. ■

laim 6. We have ρ(G′) ≥ 0.

roof. Let Q be a partition of V (G′), we shall prove that ρG′ (Q) ≥ 0. To this end, we let P = Q∪{{z}},
nd let

s =

{
0 if there exists a part Y of Q such that {v1, v2} ⊆ Y ;

2 otherwise.

10
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Clearly,
∑

X∈Q dG′ (X) ≥
∑

X∈P dG(X) − 2dG(z) + s. For convenience, we use |Q| to denote the
umber of parts of Q. Then we have |P| = |Q| + 1. Thus,

ρG′ (Q) =

∑
X∈Q

dG′ (X) − 8|Q| + 20

≥

∑
X∈P

dG(X) − 2dG(z) + s − 8|P| + 8 + 20

= ρG(P) − 2dG(z) + 8 + s.

If s = 2, then ρG′ (Q) ≥ ρG(P) ≥ ρ(G) ≥ 0 since 4 ≤ dG(z) ≤ 5. We may thus assume that s = 0.
n this case, Q contains a set Y such that {v1, v2} ⊆ Y . Clearly, Y ∈ P , hence P is nontrivial. By
laim 3(i), we have ρG(P) ≥ 6. Thus, ρG′ (Q) ≥ ρG(P) − 2 > 0.
In both cases above, we have ρG′ (Q) ≥ 0. This conclusion holds for each partition Q of V (G′),

nd hence ρ(G′) ≥ 0. ■

Now the minimality of G implies that Theorem 3.4 is applicable to G′. Thus either G′ is
Z3-connected, or there is a partition Q of G′ such that G′/Q ∈ G. But the latter case cannot happen
since G′ is 4-edge-connected. Hence G′ is Z3-connected, and so G is Z3-connected by Lemma 3.5, a
contradiction. ■

Corollary 3.7. (i) Every graph G satisfying ρ(G) ≥ 8 is Z3-connected.
(ii) [3] Every graph with four edge-disjoint spanning trees is Z3-connected.

roof. (i) The statement holds vacuously for |V (G)| = 1, 2, and so we assume |V (G)| ≥ 3. If G
s not connected, then we have ρ(G) ≤ 4 by Definition 3.1, a contradiction to ρ(G) ≥ 8. Thus, G
s connected. By Theorem 3.4, either G is Z3-connected, or there is a partition P of G such that
/P ∈ G. Since any partition of G/P can be obtained from a partition of G by collapsing vertex sets
n P to become vertices, we have ρ(G/P) ≥ ρ(G) ≥ 8. Thus, G/P /∈ G and so G is Z3-connected.

(ii) If a graph G contains 4 edge-disjoint spanning trees, then ρ(G) ≥ 12, and so G is Z3-connected
y (i). This reproves the main result in [3]. Actually, Theorem 3.4 is an improvement of the result
n [3]. ■

To complete the proof of the upper bound in Theorem 1.2, we need the following corollary.

orollary 3.8. Let G be a Z3-irreducible graph. Then for every nontrivial partition P of V (G), ρG(P) >

(G). Consequently, ρ(G) = 2|E(G)| − 8|V (G)| + 20.

roof. Let Z ∈ P with |Z | ≥ 2 and let H = G[Z]. If ρ(H) ≥ 12, then H is Z3-connected
y Corollary 3.7(i). This contradicts the fact that G is Z3-irreducible. Thus ρ(H) ≤ 11. Hence by
orollary 3.3, we have ρG(P) > ρ(G). ■

roof of the upper bound in Theorem 1.2 using Theorem 3.4. Let G be a 3-flow-critical graph
n n vertices. By Theorem 2.4(iii) and Corollary 3.8, we have that G is Z3-irreducible and ρ(G) =

|E(G)| − 8n + 20. If ρ(G) < 0, then |E(G)| < 4n − 10 holds. We may thus assume that ρ(G) ≥ 0.
ince G and any nontrivial subgraph of G are not Z3-connected, we obtain G ∈ G by Theorem 3.4.
ince K2, K3 and P3 are not 3-flow-critical, we have G = K4, and so |E(K4)| = 4|V (K4)| − 10 in this
ase. ■

roof of Theorem 1.5. By way of contradiction, we suppose |E(G)| ≥
5n
2 + 9n≤8(G). If n≤8(G) ≥

n
6 ,

hen |E(G)| ≥
5n
2 +

9n
6 = 4n, which contradicts to Theorem 1.2. So we assume n≤8(G) < n

6 . Since
(G) ≥ 3, we have 2|E(G)| =

∑
v∈V (G) d(v) ≥ 3n≤8(G) + 9(n − n≤8(G)) = 9n − 6n≤8(G) > 8n, still a

ontradiction to Theorem 1.2. This proves Theorem 1.5. ■
11
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4. Construction of 3-flow-critical graphs

Yao and Zhou [13] proved that for each positive integer k, there exists a 4-critical planar graph
ith 6k + 7 vertices and 14k + 12 edges. By duality, their theorem shows the following result on
-flow-critical planar graphs.

heorem 4.1 (Yao and Zhou [13]). For each positive integer k, there exists a 3-flow-critical planar graph
ith 8k + 7 vertices and 14k + 12 edges.

efinition 4.2. Let G1 and G2 be two graphs. Let G1⊕G2 be a graph which is obtained as the 2-sum
f G1 and G2, that is, a graph obtained from the disjoint union of G1 − e1 and G2 − e2 by identifying
1 and u2 to form a vertex u, identifying v1 and v2 to form a vertex v, and adding a new edge uv,
here e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2).

emma 4.3. If G1 and G2 are both 3-flow-critical graphs, then G1 ⊕ G2 is 3-flow-critical.

roof. Assume e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2), and assume that G1 ⊕G2 is constructed as
hown in Definition 4.2. First, we show that G1 ⊕ G2 has no modulo 3-orientation. To the contrary,
e suppose G1 ⊕ G2 has a modulo 3-orientation D with v → u. Let Di be the restriction of D on
i for each i ∈ {1, 2}. Denote d+

Di
(ui) − d−

Di
(ui) ≡ ai (mod 3) and d+

Di
(vi) − d−

Di
(vi) ≡ bi (mod 3).

hen we have a1 + a2 + 1 ≡ 0 (mod 3) since u is balanced in D, and ai + bi ≡ 0 (mod 3) since
very vertex, except perhaps ui and vi, is balanced in Di. If a1 = 0, then b1 = 0 and D1 is a modulo
-orientation of G1, a contradiction. If a1 = 1, then b1 = 2. We can obtain a modulo 3-orientation
f G1 by reversing the direction of the arc v1u1 in D1, a contradiction. If a1 = 2, then a2 = 0 and

b2 = 0, and so D2 is a modulo 3-orientation of G2, a contradiction again.
Then it suffices to show that G1 ⊕ G2 − e has a modulo 3-orientation for each edge e in G1 ⊕ G2.

Recall that Gi − e′ has a modulo 3-orientation for each e′
∈ E(Gi) by Theorem 2.4(i). If e = uv, then

the union of the modulo 3-orientations of Gi − uivi is a modulo 3-orientation of G1 ⊕ G2 − e. If
e ∈ E(G1) and e ≠ u1v1, then the union of the modulo 3-orientations of G1 − e and G2 − u2v2 is a
modulo 3-orientation of G1 ⊕ G2 − e. If e ∈ E(G2) and e ≠ u2v2, then we can also find a modulo
3-orientation of G1 ⊕ G2 − e by a symmetric argument. This proves that G1 ⊕ G2 is a 3-flow-critical
graph. ■

Finally we apply Theorem 4.1 and Lemma 4.3 to construct 3-flow-critical graphs with density
from 7

4 up to 3.

heorem 4.4. For any positive integer N and any rational number r with 7
4 < r < 3, there exists a

-flow-critical graph G on n ≥ N vertices with

rn −
5
8

≤ |E(G)| ≤ rn +
5
8
.

Proof. Assume r =
q
p , where p, q are two positive integers. Note that Lemma 4.3 provides a way

o construct 3-flow-critical graphs from smaller graphs. Now let s ≥
6(3p−q)
8q−14p + N and let G1 be a

-flow-critical planar graph with 8s + 7 vertices and 14s + 12 edges as described in Theorem 4.1.
et

a =
1

3p − q
((8q − 14p)s + 5q − 3p −

5p
8

)

nd

b =
1

3p − q
((8q − 14p)s + 5q − 3p +

5p
8

).

ince 7
4 <

q
p < 3, we have 3p−q > 0, 8q−14p > 0 and 5q−3p−

5p
8 > 0. So s > N and a > 6. Since

b − a =
5p

=
5

q > 1, there exists a positive integer t satisfying a ≤ t ≤ b. Let G2 = K+
4(3p−q) 4(3− p ) 3,t−3

12
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and let G = G1 ⊕ G2. Then G is 3-flow-critical by Lemma 4.3. By the construction of G, the graph
has 8s + 7 + t − 2 = 8s + t + 5 vertices and 14s + 12 + 3t − 8 − 1 = 14s + 3t + 3 edges. So

|V (G)| > N . It is routine to compute that rn −
5
8 ≤ |E(G)| ≤ rn +

5
8 . In fact, with a straightforward

alculation, it follows from a ≤ t ≤ b that

rn +
5
8

− |E(G)| =
q
p
(8s + t + 5) +

5
8

− (14s + 3t + 3) =
3p − q

p
(b − t) ≥ 0

nd

|E(G)| − (rn −
5
8
) = (14s + 3t + 3) −

q
p
(8s + t + 5) +

5
8

=
3p − q

p
(t − a) ≥ 0.

This completes the proof. ■
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