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1. Introduction

Graphs or signed graphs considered in this paper are finite and may have multiple 
edges or loops. For terminology and notations not defined here we follow [1,4,11].

In 1983, Bouchet [2] proposed a flow conjecture that every flow-admissible signed graph 
admits a nowhere-zero 6-flow. Bouchet [2] himself proved that such signed graphs admit 
nowhere-zero 216-flows; Zýka [13] proved that such signed graphs admit nowhere-zero 
30-flows. In this paper, we prove the following result.

Theorem 1.1. Every flow-admissible signed graph admits a nowhere-zero 11-flow.

In fact, we prove a stronger and very structural result as follows, and Theorem 1.1 is 
an immediate corollary.

Theorem 1.2. Every flow-admissible signed graph G admits a 3-flow f1 and a 5-flow 
f2 such that f = 3f1 + f2 is a nowhere-zero 11-flow, |f(e)| �= 9 for each edge e, and 
|f(e)| = 10 only if e ∈ B(supp(f1)) ∩ B(supp(f2)), where B(supp(fi)) is the set of all 
bridges of the subgraph induced by the edges of supp(fi) (i = 1, 2).

Theorem 1.2 may suggest an approach to further reduce 11-flows to 9-flows.
The main approach to prove the 11-flow theorem is the following result, which, we 

believe, will be a powerful tool in the study of integer flows of signed graphs, in particular 
to resolve Bouchet’s 6-flow conjecture.

Theorem 1.3. Every flow-admissible signed graph admits a balanced nowhere-zero Z2 ×
Z3-flow.

A Z2 × Z3-flow (f1, f2) is called balanced if supp(f1) contains an even number of 
negative edges.

The rest of the paper is organized as follows: Basic notations and definitions will be 
introduced in Section 2. Section 3 will discuss the conversion of modulo flows into integer 
flows. In particular a new result to convert a modulo 3-flow to an integer 5-flow will be 
introduced and its proof will be presented in Section 5. The proofs of Theorems 1.2 and 
1.3 will be presented in Sections 4 and 6, respectively.

2. Signed graphs, switch operations, and flows

Let G be a graph. For U1, U2 ⊆ V (G), denote by δG(U1, U2) the set of edges with 
one end in U1 and the other in U2. For convenience, we write δG(U1) and δG(v) for 
δG(U1, V (G) \ U1) and δG({v}), respectively. The degree of v is the number of edges 
incident with v, where each loop is counted twice. A d-vertex is a vertex with degree d. 
Let Vd(G) be the set of d-vertices in G. The maximum degree of G is denoted by Δ(G). 
We use B(G) to denote the set of cut-edges of G.
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A signed graph (G, σ) is a graph G together with a signature σ : E(G) → {−1, 1}. 
An edge e ∈ E(G) is positive if σ(e) = 1 and negative otherwise. Denote the set of all 
negative edges of (G, σ) by EN (G, σ). For a vertex v in G, we define a new signature σ′ by 
changing σ′(e) = −σ(e) for each e ∈ δG(v). We say that σ′ is obtained from σ by making 
a switch at the vertex v. Two signatures are said to be equivalent if one can be obtained 
from the other by making a sequence of switch operations. Define the negativeness of 
G by ε(G, σ) = min{|EN (G, σ′)| : σ′ is equivalent to σ}. A signed graph is balanced if 
its negativeness is 0. That is it is equivalent to a graph without negative edges. For a 
subgraph G′ of G, denote σ(G′) =

∏
e∈E(G′) σ(e).

For convenience, the signature σ is usually omitted if no confusion arises or is written 
as σG if it needs to emphasize G. If there is no confusion from the context, we simply 
use EN (G) for EN (G, σ) and use ε(G) for ε(G, σ).

Every edge of G is composed of two half-edges h and ĥ, each of which is incident with 
one end. Denote the set of half-edges of G by H(G) and the set of half-edges incident 
with v by HG(v). For a half-edge h ∈ H(G), we use eh to refer to the edge containing 
h. An orientation of a signed graph (G, σ) is a mapping τ : H(G) → {−1, 1} such that 
τ(h)τ(ĥ) = −σ(eh) for each h ∈ H(G). It is convenient to consider τ as an assignment 
of orientations on H(G). Namely, if τ(h) = 1, h is a half-edge oriented away from its 
end and otherwise towards its end. Such an ordered triple (G, σ, τ) is called a bidirected 
graph.

Definition 2.1. Assume that G is a signed graph associated with an orientation τ . Let A
be an abelian group and f : E(G) → A be a mapping. The boundary of f at a vertex v
is defined as

∂f(v) =
∑

h∈HG(v)

τ(h)f(eh).

The pair (τ, f) (or to simplify, f) is an A-flow of G if ∂f(v) = 0 for each v ∈ V (G), and 
is an (integer) k-flow if it is a Z-flow and |f(e)| < k for each e ∈ E(G).

Let f be a flow of a signed graph G. The support of f , denoted by supp(f), is the set 
of edges e with f(e) �= 0. The flow f is nowhere-zero if supp(f) = E(G). For convenience, 
we abbreviate the notions of nowhere-zero A-flow and nowhere-zero k-flow as A-NZF
and k-NZF, respectively. Observe that G admits an A-NZF (resp., a k-NZF) under an 
orientation τ if and only if it admits an A-NZF (resp., a k-NZF) under any orientation 
τ ′. A Zk-flow is also called a modulo k-flow. For an integer flow f of G and a positive 
integer t, let Ef=±t := {e ∈ E(G) : |f(e)| = t}.

A signed graph G is flow-admissible if it admits a k-NZF for some positive integer k. 
Bouchet [2] characterized all flow-admissible signed graphs as follows.

Proposition 2.2. ([2]) A connected signed graph G is flow-admissible if and only if ε(G) �=
1 and there is no cut-edge b such that G − b has a balanced component.
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Fig. 1. A signed graph admitting a Z3-NZF with all edges assigned with 1, but no 4-NZF.

3. Modulo flows on signed graphs

Just like in the study of flows of ordinary graphs and as Theorem 1.3 indicates, the 
key to make further improvement and to eventually solve Bouchet’s 6-flow conjecture is 
to further study how to convert modulo 2-flows and modulo 3-flows into integer flows. 
The following lemma converts a modulo 2-flow into an integer 3-flow.

Lemma 3.1 ([3]). If a signed graph is connected and admits a Z2-flow f1 such that 
supp(f1) contains an even number of negative edges, then it also admits a 3-flow f2

such that supp(f1) ⊆ supp(f2) and |f2(e)| = 2 if and only if e ∈ B(supp(f2)).

Remark. In Lemma 3.1 the conclusion “|f2(e)| = 2 if and only if e ∈ B(supp(f2))” is 
not listed in Theorem 1.5 of [3]. However this fact is implicit and follows from the basic 
property of flows of signed graphs: the flow value of each cut-edge must be even.

In this paper, we will show that one can convert a Z3-NZF to a very special 5-NZF.

Theorem 3.2. Let G be a signed graph admitting a Z3-NZF. Then G admits a 5-NZF g
such that Eg=±3 = ∅ and Eg=±4 ⊆ B(G).

Theorem 3.2 is also a key tool in the proof of the 11-theorem and its proof will be 
presented in Section 5.

Remark. Theorem 3.2 is sharp in the sense that there is an infinite family of signed 
graphs that admits a Z3-NZF but does not admit a 4-NZF. For example, the signed 
graph obtained from a tree in which each vertex is of degree one or three by adding a 
negative loop at each vertex of degree one. An illustration is shown in Fig. 1.

4. Proof of the 11-flow theorem

Now we are ready to prove Theorem 1.2, assuming Theorems 1.3 and 3.2.
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Proof of Theorem 1.2. Let G be a connected flow-admissible signed graph. By Theo-
rem 1.3, G admits a balanced Z2 × Z3-NZF (g1, g2). By Lemma 3.1, G admits a 3-flow 
f1 such that supp(g1) ⊆ supp(f1) and |f1(e)| = 2 if and only if e ∈ B(supp(f1)).

By Theorem 3.2, G admits a 5-flow f2 such that supp(f2) = supp(g2) and

Ef2=±3 = ∅. (1)

Since (g1, g2) is a Z2 × Z3-NZF of G,

supp(f1) ∪ supp(f2) = supp(g1) ∪ supp(g2) = E(G). (2)

We are to show that f = 3f1 + f2 is a nowhere-zero 11-flow described in the theorem. 
Since |f1(e)| ≤ 2 and |f2(e)| ≤ 4, we have

|f(e)| = |(3f1 + f2)(e)| ≤ 3|f1(e)| + |f2(e)| ≤ 10 ∀e ∈ E(G).

Furthermore, by applying Equations (1) and (2),

3f1(e) + f2(e) �= 0,±9 ∀e ∈ E(G).

If |f(e)| = 10 for some edge e ∈ E(G), then |f1(e)| = 2 and |f2(e)| = 4. Thus, by 
Lemmas 3.1 and 3.2 again, the edge e ∈ B(supp(f1)) ∩B(supp(f2)) and hence f = 3f1+f2

is the 11-NZF described in Theorem 1.2. �
5. Proof of Theorem 3.2

As the preparation of the proof of Theorem 3.2, we first need some necessary lemmas.
The first lemma is a stronger form of the famous Petersen’s theorem, and here we 

omit its proof (see Exercise 16.4.8 in [1]).

Lemma 5.1. Let G be a bridgeless cubic graph and e0 ∈ E(G). Then G has two perfect 
matchings M1 and M2 such that e0 ∈ M1 and e0 /∈ M2.

We also need a splitting lemma due to Fleischner [5].
Let G be a graph and v be a vertex. If F ⊂ δG(v), we denote by G[v;F ] the graph 

obtained from G by splitting the edges of F away from v. That is, adding a new vertex 
v∗ and changing the common end of edges in F from v to v∗.

Lemma 5.2. ([5]) Let G be a bridgeless graph and v be a vertex. If dG(v) ≥ 4 and 
e0, e1, e2 ∈ δG(v) are chosen in a way that e0 and e2 are in different blocks when v is 
a cut-vertex, then either G[v;{e0,e1}] or G[v;{e0,e2}] is bridgeless. Furthermore, G[v;{e0,e2}]
is bridgeless if v is a cut-vertex.
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Let G be a signed graph. A path P in G is called a subdivided edge of G if every internal 
vertex of P is a 2-vertex. The suppressed graph of G, denoted by G, is the signed graph 
obtained from G by replacing each maximal subdivided edge P with a single edge e and 
assigning σ(e) = σ(P ).

The following result is proved in [12] which gives a sufficient condition when a modulo 
3-flow and an integer 3-flow are equivalent for signed graphs.

Lemma 5.3 ([12]). Let G be a bridgeless signed graph. If G admits a Z3-NZF, then it 
also admits a 3-NZF.

Lemma 5.3 is strengthened in the following lemma, which will serve as the induction 
base in the proof of Theorem 3.2.

Lemma 5.4. Let G be a bridgeless signed graph admitting a Z3-NZF. Then for any e0 ∈
E(G) and for any i ∈ {1, 2}, G admits a 3-NZF such that e0 has the flow value i.

Proof. Let G be a counterexample with β(G) :=
∑

v∈V (G) |dG(v) − 2.5| minimum. Since 
G admits a Z3-NZF, there is an orientation τ of G such that for each v ∈ V (G),

∂τ(v) :=
∑

h∈HG(v)

τ(h) ≡ 0 (mod 3). (3)

We claim Δ(G) ≤ 3. Suppose to the contrary that G has a vertex v with dG(v) ≥ 4. 
By Lemma 5.2, we can split a pair of edges {e1, e2} from v such that the new signed 
graph G′ = G[v;{e1,e2}] is still bridgeless. In G′, we consider τ as an orientation on E(G′)
and denote the common end of e1 and e2 by v∗. If ∂τ(v∗) = 0, then β(G′) < β(G) and 
by Eq. (3), ∂τ(u) ≡ 0 (mod 3) for each u ∈ V (G′), a contradiction to the minimality 
of β(G). If ∂τ(v∗) �= 0, then we further add a positive edge vv∗ to G′ and denote 
the resulting signed graph by G′′. Let τ ′′ be the orientation of G′′ obtained from τ
by assigning vv∗ with a direction such that ∂τ ′′(v∗) ≡ 0 (mod 3). Then by Eq. (3), 
∂τ ′′(u) ≡ 0 (mod 3) for each u ∈ V (G′′). Since β(G′′) < β(G), we obtain a contradiction 
to the minimality of β(G) again. Therefore Δ(G) ≤ 3.

Since G is bridgeless, every vertex of G is of degree 2 or 3. Note that the existence of 
the desired 3-flows is preserved under the suppressing operation. Then the suppressed 
signed graph G of G is also a counterexample, and β(G) < β(G) when G has some 
2-vertices. Therefore G is cubic by the minimality of β(G).

Since G is cubic, by Eq. (3), either ∂τ(v) = dG(v) or ∂τ(v) = −dG(v) for each 
v ∈ V (G). By Lemma 5.1, we can choose two perfect matchings M1 and M2 such that 
e0 /∈ M1 and e0 ∈ M2. For i = 1, 2, let τi be the orientation of G obtained from τ by 
reversing the directions of all edges of Mi, and define a mapping fi : E(G) → {1, 2} by 
setting fi(e) = 2 if e ∈ Mi and fi(e) = 1 if e /∈ Mi. Then f1 and f2 are two desired 
nowhere-zero 3-flows of G under τ1 and τ2, respectively, a contradiction. �
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Now we are ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove by induction on t = |B(G)|, the number of cut-
edges in G. If t = 0, then G is bridgeless and it is a direct corollary of Lemma 5.4. This 
establishes the base of the induction.

Assume t > 0. Let e = v1v2 be a cut-edge in B(G) such that one component, say B1, 
of G −e is minimal. Let B2 be the other component of G −e. We may assume the bridge 
e is a positive edge (by possibly some switch operations). Since G admits a Z3-NZF, 
δ(G) ≥ 2. Thus B1 is bridgeless and nontrivial. WLOG assume vi ∈ Bi (i = 1, 2). Let 
B′

i be the graph obtained from Bi by adding a negative loop ei at vi. Then B′
i admits 

a Z3-NZF since G admits a Z3-NZF. By induction hypothesis, B′
2 admits a 5-NZF g2

with g2(e2) = a ∈ {1, 2}. By Lemma 5.4, B′
1 admits a 3-NZF g1 such that g1(e1) = a. 

Hence we can extend g1 and g2 to a 5-NZF g of G by setting g(e) = 2a with appropriate 
orientation of e. Clearly g is a desired 5-NZF of G. �
6. Proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3, which is divided into two 
steps: first to reduce it from general flow-admissible signed graphs to cubic shrubberies 
(see Lemma 6.6); and then prove that every cubic shrubbery admits a balanced Z2×Z3-
NZF by showing a stronger result (see Lemma 6.13).

We first need some terminology and notations. Let G be a graph. For an edge e ∈
E(G), contracting e is done by deleting e and then (if e is not a loop) identifying its 
ends. Note that all resulting loops generated from the parallel edges of e are kept. For 
S ⊆ E(G), we use G/S to denote the resulting graph obtained from G by contracting 
all edges in S.

For a path P , let End(P ) and Int(P ) be the sets of the ends and internal vertices of P , 
respectively. For U1, U2 ⊆ V (G), a (U1, U2)-path is a path P satisfying |End(P ) ∩Ui| = 1
and Int(P ) ∩Ui = ∅ for i = 1, 2; if G1 and G2 are subgraphs of G, we write (G1, G2)-path 
instead of (V (G1), V (G2))-path. Let C = v1 · · · vrv1 be a circuit. A segment of C is the 
path vivi+1 · · · vj−1vj (mod r) contained in C and is denoted by viCvj or vjC−vi. An 
�-circuit is a circuit with length �.

For a plane graph G embedded in the plane Π, a face of G is a connected topological 
region (an open set) of Π \ G. If the boundary of a face is a circuit of G, it is called a 
facial circuit of G. Denote [1, k] = {1, 2, . . . , k}.

6.1. Shrubberies

Now we start to introduce shrubberies and removable circuits, which are key concepts 
for induction purpose.

Let G be a signed graph and H be a connected signed subgraph of G. An edge 
e ∈ E(G) \ E(H) is called a chord of H if both ends of e are in V (H). We denote the 



M. DeVos et al. / Journal of Combinatorial Theory, Series B 149 (2021) 198–221 205
set of chords of H by CG(H) or simply C(H), and partition C(H) into

U(H) = UG(H) = {e ∈ C(H) : H+e is unbalanced} and U(H) = UG(H) = C(H)\U(H).

A circuit C is called removable if either it is unbalanced or it satisfies |U(C)| + |V2(G) ∩
V (C)| ≥ 2.

A signed graph G is called a shrubbery if it satisfies the following requirements:

(S1) Δ(G) ≤ 3;
(S2) every signed cubic subgraph of G is flow-admissible;
(S3) |δG(V (H))| +

∑
x∈V (H)(3 − dG(x)) + 2|U(H)| ≥ 4 for any balanced and connected 

signed subgraph H with |V (H)| ≥ 2;
(S4) G has no balanced 4-circuits.

The following proposition shows that shrubberies form a nice graph class which is 
closed under deletion, a crucial fact for induction.

Proposition 6.1. Every signed subgraph of a shrubbery is still a shrubbery.

Proof. Let G′ be an arbitrary signed subgraph of a shrubbery G. Obviously, G′ satisfies 
(S1), (S2) and (S4). We will show that G′ satisfies (S3).

Let H be a balanced and connected signed subgraph of G′ with |V (H)| ≥ 2. Let 
A1 = δG(V (H)) \ δG′(V (H)) and A2 = CG(H) \ CG′(H). Then

∑
x∈V (H)

(3 − dG′(x)) −
∑

x∈V (H)

(3 − dG(x)) =
∑

x∈V (H)

(dG(x) − dH(x)) = |A1| + 2|A2|.

Since UG′(H) ⊆ UG(H) and CG′(H) ⊆ CG(H), we have

|UG(H)| − |UG′(H)| ≤ |A2|.

Hence

|δG′(V (H))| +
∑

x∈V (H)

(3 − dG′(x)) + 2|UG′(H)|

≥ (|δG(V (H))| − |A1|) +
[ ∑
x∈V (H)

(3 − dG(x)) + |A1| + 2|A2|
]
+ 2(|UG(H)| − |A2|)

= |δG(V (H))| +
∑

x∈V (H)

(3 − dG(x)) + 2|UG(H)| ≥ 4,

since G is a shrubbery.
Therefore G′ satisfies (S3) and thus is a shrubbery. �
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Proposition 6.1 will be applied frequently in the proof of Lemma 6.13 and thus it will 
not be referenced explicitly.

Next we will apply the following two theorems and Lemma 6.5 to reduce Theorem 1.3
for general signed graphs to cubic shrubberies.

Theorem 6.2. ([8]) Every ordinary bridgeless graph admits a 6-NZF.

Theorem 6.3. ([9]) Let A be an abelian group of order k. Then an ordinary graph admits 
a k-NZF if and only if it admits an A-NZF.

Let G be an ordinary oriented graph, T ⊆ E(G) and A be an abelian group. For any 
function γ : T → A, let Fγ(G) denote the number of A-NZF φ of G with φ(e) = γ(e) for 
every e ∈ T . For every X ⊆ V (G), let αX : E(G) → {−1, 0, 1} be given by the rule

αX(e) =

⎧⎪⎨
⎪⎩

1 if e ∈ δG(X) is directed toward X,
−1 if e ∈ δG(X) is directed away X,

0 otherwise.

For any two functions γ1, γ2 from T to A, we call γ1, γ2 similar if for every X ⊆ V (G), 
the following holds∑

e∈T

αX(e)γ1(e) = 0 if and only if
∑
e∈T

αX(e)γ2(e) = 0.

Lemma 6.4. (Seymour - Personal communication). Let G be an ordinary oriented graph, 
T ⊆ E(G) and A be an abelian group. If the two functions γ1, γ2 : T → A are similar, 
then Fγ1(G) = Fγ2(G).

Proof. We proceed by induction on the number of edges in E(G) \T . If this set is empty, 
then Fγi

(G) ≤ 1 and Fγi
(G) = 1 if and only if γi is an A-NZF of G for i = 1, 2. Thus, 

the result follows by the assumption. Otherwise, choose an edge e ∈ E(G) \ T . If e is a 
cut-edge, then Fγi

(G) = 0 for i = 1, 2. If e is a loop, then we have inductively that

Fγ1(G) = (|A| − 1)Fγ1(G− e) = (|A| − 1)Fγ2(G− e) = Fγ2(G).

Otherwise, applying induction to G − e and G/e we have

Fγ1(G) = Fγ1(G/e) −Fγ1(G− e) = Fγ2(G/e) −Fγ2(G− e) = Fγ2(G). �
The following lemma directly follows from Lemma 6.4.

Lemma 6.5. Let G be an ordinary oriented graph and A be an abelian group. Assume that 
G has an A-NZF. If G has a vertex v with dG(v) ≤ 3 and γ : δG(v) → A \ {0} satisfies 
∂γ(v) = 0, then there exists an A-NZF φ such that φ|δG(v) = γ.
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Proof. Let f be an A-NZF of G. Since dG(v) ≤ 3, f |δG(v) is similar to γ. Thus by 
Lemma 6.4, we have Fγ(G) = Ff |δG(v)(G) �= 0. Therefore there exists an A-NZF φ such 
that φ|δG(v) = γ. �

Now we can reduce Theorem 1.3 to cubic shrubberies.

Lemma 6.6. The following two statements are equivalent.

(i) Every flow-admissible signed graph admits a balanced Z2 × Z3-NZF.
(ii) Every cubic shrubbery admits a balanced Z2 × Z3-NZF.

Proof. “(i)⇒(ii)”: By (S2), every cubic shrubbery is flow-admissible, and thus (ii) follows 
from (i).

“(ii)⇒(i)”: Let G be a counterexample to (i) with β(G) =
∑

v∈V (G) |dG(v) − 2.5|
minimum. Since G is flow-admissible, it admits a k-NZF (τ, f) for some positive integer 
k and thus V1(G) = ∅. Furthermore, by the minimality of β(G), G is connected and 
V2(G) = ∅ otherwise the suppressed signed graph G of G is also flow-admissible and has 
smaller β(G) than β(G). We are going to show that G is a cubic shrubbery and thus 
admits a balanced Z2 ×Z3-NZF by (ii), which is a contradiction to the fact that G is a 
counterexample. By the definition of shrubberies, we only need to prove (I)-(III) in the 
following.

(I) G is cubic.
Suppose to the contrary that G has a vertex v with dG(v) �= 3. Then dG(v) ≥ 4. Let 

{e1, e2} ⊂ δG(v) and let G′ = G[v;{e1,e2}]. Denote the new common end of e1 and e2 in 
G′ by v∗. If ∂f(v∗) = 0, let G′′ = G′. If ∂f(v∗) �= 0, we further add a positive edge 
vv∗ with direction from v to v∗ and assign vv∗ with flow value ∂f(v∗). Let G′′ be the 
resulting signed graph. In both cases, G′′ is flow-admissible and β(G′′) < β(G). By the 
minimality of β(G), G′′ admits a balanced Z2×Z3-NZF, and so does G, a contradiction. 
This proves (I).

(II) |δG(V (H))| + 2|U(H)| ≥ 4 for any balanced and connected signed subgraph H with 
|V (H)| ≥ 2.

Suppose to the contrary that H is such a subgraph with |δG(V (H))| + 2|U(H)| ≤ 3. 
Let X = V (H). Then H ′ = G[X] − U(H) is a balanced and connected signed subgraph 
of G. WLOG assume that all edges of H ′ are positive. Let G1 = G/E(H ′). Then G1 is 
also flow-admissible.

Since |δG(X)| + 2|U(H)| ≤ 3, it follows from the choice of G and Proposition 2.2
that either |U(H)| = 0 and |δG(X)| ∈ {2, 3} or |U(H)| = 1 and |δG(X)| = 1. Let 
x be the contracted vertex in G1 = G/E(H ′) corresponding to E(H ′). Then dG1(x) =
|δG(X)| +2|U(H)| ∈ {2, 3} and β(G1) < β(G) since |X| = |V (H)| ≥ 2. By the minimality 
of β(G), G1 admits a balanced Z2 ×Z3-NZF (τ1, f1), where τ1 is the restriction of τ on 
G1.
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Let HX be the set of the half edges of each edge in δG(X) ∪ U(H) whose end is in 
X. Then |HX | = |δG(X)| + 2|U(H)| = 2 or 3. Construct a new graph G2 from H ′ +HX

by identifying the non-ends of all half edges in HX into a new vertex y. Now in G2, y is 
the common end of all h ∈ Hx. Then in G2, y is the vertex incident with all h ∈ HX . 
Since G is flow-admissible, G2 is a bridgeless ordinary graph and thus admits a balanced 
Z2 × Z3-NZF by Theorems 6.2 and 6.3. Let τ2 be the restriction of τ on G2 and define 
γ(h) = f1(eh) for each h ∈ HX . Note that τ2(h) = τ1(h) for each h ∈ HX . Since (τ1, f1)
is a balanced Z2×Z3-NZF of G1, we have ∂γ(y) = −∂f1(x) = 0. By Lemma 6.5, there is 
a balanced Z2 ×Z3-NZF (τ2, f2) of G2 such that f2|δG2 (y) = γ = f1|δG1 (x). Thus (τ1, f1)
can be extended to a balanced Z2 × Z3-NZF of G, a contradiction. This proves (II).

(III) G has no balanced 4-circuits.
Suppose to the contrary that G has a balanced 4-circuit C. Then we may assume that 

all edges of C are positive. Let G′ = G/E(C). Then β(G′) < β(G). By the minimality 
of β(G), G′ admits a balanced Z2 × Z3-NZF, say (f ′

1, f
′
2). Since C is a circuit with all 

positive edges and |E(C)| = 4 and since |Z2 × Z3| = 6, it is easy to extend (f ′
1, f

′
2) to a 

balanced Z2 × Z3-NZF of G, a contradiction. This proves (III) and thus completes the 
proof of the lemma. �
6.2. Nowhere-zero watering

In this subsection, we will prove that every cubic shrubbery admits a balanced Z2×Z3-
NZF. In fact, we will prove a stronger result that every shrubbery admits a nowhere-zero 
watering as in Lemma 6.13 below. Here a nowhere-zero watering (see Definition 6.10) 
involves flows with certain boundaries at vertices of degree one or two, which provides 
some flexibility for induction and makes some reduction arguments on removable circuits 
possible. Before proceeding, we need some preparations.

Theorem 6.7. ([10]) Let G be a 2-connected graph with Δ(G) ≤ 3 and let y1, y2, y3 ∈
V (G). Then either there exists a circuit of G containing y1, y2, y3, or there is a partition 
of V (G) into {X1, X2, Y1, Y2, Y3} with the following properties:

(1) yi ∈ Yi for i = 1, 2, 3;
(2) δG(X1, X2) = δG(Yi, Yj) = ∅ for 1 ≤ i < j ≤ 3;
(3) |δG(Xi, Yj)| = 1 for i = 1, 2 and j = 1, 2, 3.

Let H be a contraction of G and let x ∈ V (G). We use x̂ to denote the vertex in H
which x is contracted into.

Theorem 6.8. ([7]) Let G be a 2-connected signed graph with |EN(G)| = ε(G) = k ≥ 2, 
where EN (G) = {x1xk+1, . . . , xkx2k}. Then the following two statements are equivalent.

(i) G does not contain two edge-disjoint unbalanced circuits.
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(ii) The graph G can be contracted to a cubic graph G′ such that either G′ −
{x̂1x̂k+1, . . . , ̂xkx̂2k} is a 2k-circuit C1 on the vertices x̂1, . . . , ̂xk, ̂xk+1, . . . , ̂x2k or 
can be obtained from a 2-connected cubic plane graph by selecting a facial circuit 
C2 and inserting the vertices x̂1, . . . , ̂xk, ̂xk+1, . . . , ̂x2k on the edges of C2 in such a 
way that for every pair {i, j} ⊆ [1, k], the vertices x̂i, x̂j , ˆxk+i, ˆxk+j are around the 
circuit C1 or C2 in this cyclic order.

Lemma 6.9. ([6]) Let G be an ordinary oriented graph and A be an abelian group. Then G
is connected if and only if for every function β : V (G) → A satisfying 

∑
v∈V (G) β(v) = 0, 

there exists φ : E(G) → A such that ∂φ = β.

Definition 6.10. Let G be a signed graph with Δ(G) ≤ 3 and a given orientation. A 
nowhere-zero watering (briefly, NZW) of G is a mapping f : E(G) → Z2 ×Z3 − {(0, 0)}
such that

∂f(v) = (0, 0) if dG(v) = 3 and ∂f(v) = (0,±1) if dG(v) = 1, 2.

Similar to flows, the existence of an NZW is also an invariant under switch operation. 
The following reductions/extensions of NZW on removable circuits play an important 
role in later proofs.

Lemma 6.11. Let G be a shrubbery and C be a removable circuit of G. Then for every 
NZW f ′ = (f ′

1, f
′
2) of G′ = G − V (C), there exists an NZW f = (f1, f2) of G so that 

f(e) = f ′(e) for every e ∈ E(G′) and supp(f1) = supp(f ′
1) ∪E(C).

Proof. We first extend f ′ to f : E(G) → Z2 ×Z3 as follows where αe is a variable in Z3
for every e ∈ U(C).

f(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,±1) if e ∈ δ(V (C)),
(1, 0) if e ∈ E(C),
(0, 1) if e ∈ U(C),
(0, αe) if e ∈ U(C).

Since every v ∈ V (G) \ V (C) adjacent to a vertex in V (C) has degree less than three in 
G′, we may choose values f(e) for each edge e ∈ δ(V (C)) so that f satisfies the boundary 
condition for a watering at every vertex in V (G) \ V (C). Obviously by the construction 
∂f1(v) = 0 for every v ∈ V (C). So we need only adjust ∂f2(v) for v ∈ V (C) to obtain a 
watering. We distinguish the following two cases.

Case 1: C is unbalanced.
In this case U(C) = ∅. Choose arbitrary ±1 assignments to the variables αe. Since C

is unbalanced, for every vertex u ∈ V (C), there is a function ηu : E(C) → Z3 so that 
∂ηu(u) = 1 and ∂ηu(v) = 0 for any v ∈ V (C) \ {u}. Now we may adjust f2 by adding a 
suitable combination of the ηu functions so that f is an NZW of G, as desired.
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Case 2: C is balanced.
WLOG we may assume that every edge of C is positive and every unbalanced chord is 

oriented so that each half edge is directed away from its end. In this case, each negative 
chord e contributes 2f2(e) = αe to the sum 

∑
v∈V (C) ∂f2(v). For every v ∈ V (C) ∩

V2(G), let βv be a variable in Z3. Since |U(C)| + |V2(G) ∩ V (C)| ≥ 2, we can choose ±1
assignments to all of the variables αe and βv so that the following equation is satisfied:

∑
v∈V (C)

∂f2(v) =
∑

v∈V (C)∩V2(G)

βv.

By Lemma 6.9, we may choose a function φ : E(C) → Z3 so that

∂φ(v) =
{

βv − ∂f2(v) if v ∈ V (C) ∩ V2(G),
−∂f2(v) if v ∈ V (C) \ V2(G).

Now modify f by adding φ to f2 and then f is an NZW of G, as desired. �
A theta is a graph consisting of two distinct vertices and three internally disjoint 

paths between them. A theta is unbalanced if it contains an unbalanced circuit. By the 
definition, the following observation is straightforward.

Observation 6.12. Let G be a signed graph containing no unbalanced thetas and Δ(G) ≤ 3. 
Then for any unbalanced circuit C and any x ∈ V (G) \ V (C), G does not contain two 
internally disjoint (x, C)-paths.

Now we present our main result of this subsection.

Lemma 6.13. Every shrubbery has an NZW. Furthermore, if G is a shrubbery with an 
unbalanced theta or a negative loop and ε ∈ {−1, 1}, then G has an NZW f = (f1, f2)
such that σ(supp(f1)) = ε.

Before we go through the details of the proof, we first present the outline of the proof.

Outline of the proof of Lemma 6.13: Consider G the minimum counterexample to the 
lemma. If G does not contain an unbalanced theta or a negative loop, by Lemma 6.11, 
all removable circuits are forbidden from G (See Claim 2-(1)). However due to the re-
quirement of ε, if G has an unbalanced theta or a negative loop, only removable circuits 
with certain properties can be forbidden from G (See Claim 2-(2a) and (2b)).

Thus, in order to avoid “forbidden circuits”, certain structures of G are determined 
step-by-step in Claims 3-8, especially, the non-existence of edge-disjoint unbalanced cir-
cuits (Claim 6). With those structures and the application of Theorem 6.8, we are able 
to lead the final contradiction that some forbidden circuit does exist in the remaining 
part of the proof (Claims 9-11 and the final step).
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Proof. Let G be a minimum counterexample with respect to |E(G)|. Then G is con-
nected.

Claim 1. Δ(G) = 3 and G is 2-connected. Thus G does not contain loops.

Proof of Claim 1. It is obvious that both a circuit (balanced or unbalanced) and a path 
have NZWs. Since Δ(G) ≤ 3 by (S1), we have Δ(G) = 3.

Now we show that G is 2-connected. Suppose to the contrary that G has a cut vertex. 
Since Δ(G) = 3, G contains a cut-edge e = v1v2. Let Gi be the component of G − e

containing vi. By the minimality of G, each Gi admits an NZW f i = (f i
1, f

i
2), and 

∂f i
2(vi) �= 0 since dGi

(vi) ≤ 2. Thus we can obtain an NZW f = (f1, f2) of G by setting 
f(e) = (0, 1) and f |E(Gi) = f i or −f i according to the orientation of e and the values 
of ∂f1

2 (v1) and ∂f2
2 (v2). Further, if G contains an unbalanced theta or a negative loop, 

so does one component of G − e, say G1. By the minimality of G, we choose f1 such 
that σ(supp(f1

1 )) = ε · σ(supp(f2
1 )). Hence σ(supp(f1)) = σ(supp(f1

1 )) · σ(supp(f2
1 )) =

ε · σ(supp(f2
1 )) · σ(supp(f2

1 )) = ε, a contradiction. �
Claim 2. (1) If G does not contain an unbalanced theta, then G does not contain a 
removable circuit.

(2) If G contains an unbalanced theta, then G has no removable circuit C with one of 
the following properties:

(2a) G − V (C) contains an unbalanced theta;
(2b) G − V (C) is balanced and σ(C) = ε.

Proof of Claim 2. Note that G does not contain a negative loop.
(1) is straightforward from Lemma 6.11.
Suppose that (2) is not true. Then G contains an unbalanced theta. Let C be a 

removable circuit satisfying (2a) or (2b). By the minimality of G, there exists an NZW 
f ′ = (f ′

1, f
′
2) of G −V (C) such that σ(supp(f ′

1)) = ε ·σ(C) in Case (2a) and σ(supp(f ′
1)) =

1 in Case (2b). By Lemma 6.11, f ′ can be extended to an NZW f = (f1, f2) of G such 
that supp(f1) = supp(f ′

1) ∪ E(C). In particular for Cases (2a) and (2b), σ(supp(f1)) =
σ(supp(f ′

1)) · σ(C) = ε, a contradiction. �
Claim 3. Let X ⊂ V (G) such that |X| ≥ 2, G[X] is balanced, and |δG(X)| = 2. If 
G −X either contains an unbalanced theta, or is balanced and contains a circuit, then 
X ⊆ V2(G) and thus G[X] is a path.

Proof of Claim 3. The conclusion that G[X] is a path directly follows from the properties 
of X and the first conclusion that X ⊆ V2(G).

Suppose the claim fails. Let X ⊂ V (G) be a minimal set with the above properties 
such that X ∩V3(G) �= ∅. Then G[X] is 2-connected by the minimality of X. Since G[X]
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is balanced and U(G[X]) = ∅, by (S3), we have

2 +
∑
x∈X

(3 − dG(x)) = |δG(X)| +
∑
x∈X

(3 − dG(x)) + 2|U(G[X])| ≥ 4.

The above inequality implies that X contains at least two 2-vertices. Since G[X] is 
2-connected, let C be a circuit in G[X] containing at least two 2-vertices. Then C is 
removable and thus by Claim 2-(2a), G − V (C) does not contain a unbalanced theta, 
which implies that G −X does not contain unbalanced theta either. By the hypothesis, 
G −X is balanced and G −X contains a circuit too.

Denote δG(X) = {e1, e2}. Since both G[X] and G − X are balanced, by possibly 
replacing σG with an equivalent signature, we may assume that σG(e1) ∈ {−1, 1} and 
that σG(e) = 1 for every other edge e ∈ E(G). Since C is a removable circuit of G, 
G contains an unbalanced theta by Claim 2-(1), and so G is unbalanced. Therefore 
σG(e1) = −1 and thus e1 is the only negative edge in G.

Let C ′ be an unbalanced circuit and C ′′ be a circuit in G −X. Then C ′′ is balanced 
and C ′ contains e1 and e2.

Now we show that C ′ ∪ (G − X) contains an unbalanced theta. Denote e1 = x1y1
and e2 = x2y2, where x1, x2 ∈ X and y1, y2 ∈ V (G) \ X. Since G is 2-connected and 
Δ(G) = 3, there are two disjoint (x1, C ′′)-paths P1 and P2 with V (P1) ∩ V (P2) = {x1}. 
Since C ′ contains both e1 and e2, we may choose P1 and P2 such that P1 ∪ P2 contains 
the segment of C ′ in G[X] from x1 to x2. Since e1 is the only negative edge, P1∪P2∪C ′′

is an unbalanced theta.
Since C ′ is unbalanced, it is removable. Since G − V (C ′) is balanced and σ(C ′) =

−1, by Claim 2-(2b), we have ε = 1. On the other hand, since C is removable and 
σG(C) = 1 = ε, G −V (C) is unbalanced by Claim 2-(2b) again. Thus we may choose the 
unbalanced circuit C ′ in G − V (C). Hence V (C ′) ∩ V (C) = ∅. Therefore P1 ∪P2 ∪C ′′ is 
an unbalanced theta in G − V (C), a contradiction to Claim 2-(2a). �
Claim 4. Let X ⊂ V (G) such that |X| ≥ 2, G[X] is balanced, and |δG(X)| ≤ 3. For any 
two distinct ends x1, x2 in X of δG(X), there is an (x1, x2)-path in G[X] containing at 
least one vertex in V2(G).

Proof of Claim 4. Suppose that the claim fails. Let x1x
′
1, x2x

′
2 ∈ δG(X), and Bi be the 

maximal 2-connected subgraph of G[X] containing xi for i = 1, 2. Since G is 2-connected 
and Δ(G) = 3 by Claim 1 and |δG(X)| ≤ 3, we have that G[X] is connected and 
dG(x1) = dG(x2) = 3. Moreover every edge in δG[X](V (Bi)) is a cut-edge of G[X] by 
the maximality of Bi. Thus |δG[X](V (Bi))| is equal to the number of components of 
G[X] − V (Bi). Since G is 2-connected, we have

(a) for each component A of G[X] − V (Bi), δG(V (A), V (G) \X) ≥ 1 and thus
(b) |δG(V (Bi))| ≤ |δG(X)| ≤ 3.
Moreover, since G[X] is balanced, Bi is balanced for i = 1, 2. Thus we further have
(c) U(Bi) = ∅ for i = 1, 2.
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We first show that for each i = 1, 2 Bi does not contain a 2-vertex and is trivial.
WLOG, suppose to the contrary that B1 contains a 2-vertex y.
If x2 ∈ V (B1), then there are two internally disjoint (y, {x1, x2})-paths P1 and P2. 

Then P1 ∪ P2 is an (x1, x2)-path in G[X] containing one 2-vertex.
If x2 /∈ V (B1), then B1 and B2 are disjoint since Δ(G) = 3. Since G[X] is connected, 

let P3 be an (x2, B1)-path and y1 be the other end of P3. Then y1 ∈ V (B1). Again 
since B1 is 2-connected and dG(x1) = 3, y1 �= x1 and there are two internally disjoint 
(y, {y1, x1})-paths, P ′

1 and P ′
2. Then P3 ∪ P ′

1 ∪ P ′
2 is a desired (x1, x2)-path. This proves 

that B1 (and B2) doesn’t contain a 2-vertex.
By (b) and (c), we have |δG(V (Bi))| ≤ 3 and U(Bi) = ∅ for i = 1, 2. If Bi is nontrivial, 

then by (S3), we have

4 ≤
∑

x∈V (Bi)

(3 − dG(x)) + |δG(V (B1))| ≤
∑

x∈V (Bi)

(3 − dG(x)) + 3.

The above inequality implies that Bi contains a 2-vertex, a contradiction. Therefore Bi

is trivial.
Since dG(x1) = 3, dG[X](x1) = 2 and thus G[X] − x1 has two components, say A1

and A2. WLOG, we may assume x2 ∈ V (A2). Since G is 2-connected, there exists 
x3x

′
3 ∈ δG(V (A1), V (G) \X) with x3 ∈ V (A1). Similarly, G[X] −x2 has two components 

A3 and A4. Since G[X] is connected, the subgraph induced by V (A1) together with 
x1 must be contained in one of A3 and A4, say A4. Thus δG(V (A4), V (G) \ X) =
{x1x

′
1, x3x

′
3}. Note that δG(X) = {x1x

′
1, x2x

′
2, x3x

′
3} since |δG(X)| ≤ 3. Since x2 /∈

V (A3), δ(V (A3), V (G) \X) = 0 < 1, a contradiction to (a). This proves the claim. �
Claim 5. G does not contain two disjoint unbalanced circuits C1 and C2 such that 
V3(G) ⊆ V (C1) ∪ V (C2).

Proof of Claim 5. Suppose the claim fails. Let C1 and C2 be two disjoint unbalanced 
circuits such that V3(G) ⊆ V (C1) ∪V (C2). Then every vertex of G′ = G −E(C1 ∪C2) is 
of degree at most 2. By Claim 2-(2a), G − V (Ci) does not contain unbalanced theta for 
each i = 1, 2. Thus by Observation 6.12, every nontrivial component of G′ is a path with 
one end in V (C1) and the other end in V (C2). Since G is 2-connected and Δ(G) = 3, 
there are at least two 3-vertices in each Ci.

When ε = −1, choose x1, x2 from V3(G) ∩ V (C1) such that the segment P = x1C1x2
contains all vertices of V3(G) ∩ V (C1). Let Pi be the path in G′ with one end xi and 
yi be the other end of Pi for i = 1, 2. Since C2 is unbalanced, there is a segment, say 
y1C2y2, of C2 such that the circuit C = P ∪P1∪P2∪y1C2y2 is unbalanced, and thus C is 
removable. This contradicts Claim 2-(2b) since G −V (C) is a forest (which is balanced).

When ε = 1, by the minimality of G and since G′′ = G − V (C1 ∪ C2) is a forest, G′′

admits an NZW f ′ = (f ′
1, f

′
2) with supp(f ′

1) = ∅. By applying Lemma 6.11 twice, we 
extend f ′ = (f ′

1, f
′
2) to an NZW f = (f1, f2) of G such that supp(f1) = E(C1) ∪ E(C2). 

So σ(supp(f1)) = σ(C1) · σ(C2) = 1 = ε, a contradiction. �
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Claim 6. G does not contain two disjoint unbalanced circuits.

Proof of Claim 6. Suppose to the contrary that C1 and C2 are two disjoint unbalanced 
circuits of G. By Claim 5, V3(G) \ V (C1 ∪ C2) �= ∅.

Let x ∈ V3(G) \V (C1∪C2). By Claim 2-(2a), for each Ci, G −V (Ci) does not contain 
an unbalanced theta. Thus by Observation 6.12, there exists a 2-edge-cut of G separating 
x from V (C1 ∪ C2). Let {e1, e2} be such a 2-edge-cut. Let

F = {e1} ∪ {e ∈ E(G) : {e, e1} is a 2-edge-cut of G}

and B be the set of all nontrivial components of G − F . Then every member of B is 
2-connected. Since dG(x) = 3, there is a B0 ∈ B containing x.

We claim that B has the following properties:
(a) Each B ∈ B contains a removable circuit. In particular, if B is balanced, then B
contains at least one 2-vertex.
(b) Each B ∈ B is either balanced or is an unbalanced circuit.
(c) |B| ≥ 3.

Let B ∈ B. Then |δG(V (B))| = 2 and U(B) = ∅. If B is balanced, then by (S3), 
B contains at least two 2-vertices and thus contains a circuit containing at least two 
2-vertices which is removable. If B is unbalanced, then B contains an unbalanced circuit 
which is also removable. This proves (a).

Since B0 doesn’t contain C1 or C2, |B| ≥ 2. By (a) each member B in B contains a 
removable circuit. Thus by Claim 2-(2a), each member of B does not contain unbalanced 
theta and so is an unbalanced circuit if it is unbalanced. This proves (b).

By (b), C1 and C2 belong to distinct members in B. Note that B0 doesn’t contain C1

or C2. Thus |B| ≥ 3. This proves (c).

Since G is 2-connected, there is a circuit that contains all edges in F and goes through 
every B ∈ B. We choose such a circuit C with the following properties:
(1) σ(C) = ε (the existence of C is guaranteed since C1 is unbalanced);
(2) subject to (1), |V2(G) ∩ V (C − V (C1))| is as large as possible;
(3) subject to (1) and (2), |EN (G) ∩E(C − V (C1))| is as small as possible.

We claim that C is removable.
Let B ∈ B \ {C1}. If B is balanced, then by (a), B contains a 2-vertex. Since B

is 2-connected, by (2), C contains at least one 2-vertex in B. If B is an unbalanced 
circuit of length at least 3, then by (2), C contains one 2-vertex in B too. If B is an 
unbalanced circuit of length 2, then by (3), C contains the positive edge in B and the 
negative edge in B belongs to U(C). Therefore every B ∈ B \{C1} contributes at least 1
to |U(C)| + |V2(G) ∩ V (C)|. Since |B \ {C1}| ≥ 2, we have |U(C)| + |V2(G) ∩ V (C)| ≥ 2. 
Hence C is a removable circuit.

Since each B ∈ B is either balanced or an unbalanced circuit, G − V (C) is balanced. 
This contradicts Claim 2-(2b) since C is removable and since σ(C) = ε by (1). �
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Claim 7. G contains an unbalanced theta and ε = 1.

Proof of Claim 7. We first show that G contains an unbalanced theta.
Suppose that G does not contain unbalanced theta. If G is unbalanced, then it contains 

an unbalanced circuit. If G is balanced, then |V2(G)| =
∑

x∈V (G)(3 − dG(x)) ≥ 4 −
|δG(V (G))| − |U(G)| = 4 by (S3). Since G is 2-connected by Claim 1, G has a circuit 
containing at least two 2-vertices. Hence G has a removable circuit in either case. It 
contradicts Claim 2-(1). Therefore G contains an unbalanced theta.

The existence of unbalanced thetas implies that ε ∈ {−1, 1}. Let C be an unbalanced 
circuit. By Claim 6, G does not contain two disjoint unbalanced circuits, and thus G −
V (C) is balanced. By Claim 2-(2b), ε �= σ(C) = −1, so ε = 1. �
Claim 8. |EN (G)| ≥ 2.

Proof of Claim 8. By Claim 7, G is unbalanced. Suppose to the contrary that EN(G) =
{e0}. Let P be the maximal subdivided edge of G containing e0. Let y0, y1 be the two 
ends of P . Then Int(P ) ⊆ V2(G) and y0, y1 ∈ V3(G). Let G′ = G −Int(P ) if Int(P ) �= ∅; 
Otherwise, let G′ = G − e0.

We claim that G′ is 2-connected. Suppose to the contrary that G′ is not 2-connected. 
Let B be the maximal 2-connected subgraph of G′ containing y1. Since G = G′ ∪P is 2-
connected by Claim 1, y0 /∈ V (B) and δG′(V (B)) �= ∅. By the maximality of B, each edge 
in δG′(V (B)) is a cut-edge of G′. Since G is 2-connected again, |δG′(V (B))| = 1 and thus 
|δG(V (B))| = 2 and B is nontrivial since dG(y1) = 3. Similarly the maximal 2-connected 
subgraph of G′ containing y0 is nontrivial and thus contains a circuit. Therefore B is 
balanced and G − V (B) is balanced and contains circuits since EN (G) = {e0} ⊆ E(P ). 
By Claim 3, V (B) ⊆ V2(G), which contradicts the fact y1 ∈ V3(G). This proves that G′

is 2-connected.

(i) G′ does not contain a circuit C such that {y0, y1} ∩V (C) �= ∅ and |V (C) ∩V2(G)| ≥ 2.

Proof of (i). Otherwise, C is a removable circuit such that G − V (C) is balanced and 
σ(C) = 1 = ε by Claim 7, a contradiction to Claim 2-(2b).

Since G′ is balanced and 2-connected, and is also a shrubbery by Proposition 6.1, 
|V2(G′)| =

∑
x∈V (G′)(3 − dG′(x)) ≥ 4 by (S3) and thus at least two vertices in V2(G′), 

say y2 and y3, also belong to V2(G). Note that {y2, y3} ∩{y0, y1} = ∅. By (i), there is no 
circuit in G′ containing {y1, y2, y3}. Thus by Theorem 6.7, there is a partition of V (G′)
into I = {X1, X2, Y1, Y2, Y3} such that yi ∈ Yi (i = 1, 2, 3), δG′(X1, X2) = δG′(Yi, Yj) = ∅
(1 ≤ i < j ≤ 3), and δG′(Xi, Yj) = eij (i = 1, 2; j = 1, 2, 3). See Fig. 2. For each Z ∈ I, 
G′[Z] is connected since G′ is 2-connected and |δG′(Z)| ≤ 3.

Since G′ is 2-connected and |δG′(Yj)| = 2 for j ∈ {2, 3}, we have the following state-
ment.
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y1

y2

y3

e11

e12

e13

e21

e22

e23
X1 X2

Y1

Y2

Y3

Fig. 2. A partition of V (G′) into I = {X1, X2, Y1, Y2, Y3}.

(ii) For any {i, j} = {2, 3}, there is a circuit Ci in G′ − Yj containing y1 and all the 
edges in {e11, e1i, e2i, e21}. We choose Ci such that |V (Ci) ∩V2(G)| is as large as possible. 
Then by (i), |V (Ci) ∩ V2(G)| ≤ 1.

(iii) y0 /∈ Y2 ∪ Y3, Y2 = {y2}, and Y3 = {y3}.

Proof of (iii). Let j ∈ {2, 3}. We first show |Yj | = 1 if y0 /∈ Yj . WLOG suppose to the 
contrary y0 /∈ Y3 and |Y3| ≥ 2. Since G = G′ ∪ P and y0 /∈ Y3, |δG(Y3)| = |δG′(Y3)| = 2. 
By (ii), C2 is a circuit in G′ − Y3. Since G′[Z] is connected for each Z ∈ I, G′ − Y3 is 
connected. Thus there is a (y0, C2)-path P ′ in G′ − Y3, so P ′ ∪ P ∪C2 is an unbalanced 
theta in G − Y3. Since G[Y3] is balanced and |δG(Y3)| = 2, by Claim 3, Y3 ⊆ V2(G) and 
G[Y3] is a path. Thus Y3 ⊂ V (C3) and |V (C3) ∩V2(G)| ≥ 2, a contradiction to (ii). This 
proves |Y3| = 1. Therefore |Yj | = 1 if y0 /∈ Yj for each j ∈ {2, 3}.

Now we show y0 /∈ Y2 ∪ Y3. Otherwise WLOG, assume y0 /∈ Y3 and y0 ∈ Y2. Then 
Y3 = {y3} and y3 ∈ V2(G). By (S4), C3 is not a balanced 4-circuit, and thus there is a 
set Z ∈ {Y1, X1, X2} such that |V (C3) ∩ Z| ≥ 2. Since |V (Z) ∩ {y0, y1}| ≤ 1, G[Z] is 
balanced. Obviously |δG(Z)| = 3. By Claim 4 and the maximality of |V (C3) ∩V2(G)|, C3
contains a 2-vertex in Z. Together with the 2-vertex y3, we have |V (C3) ∩ V2(G)| ≥ 2, a 
contradiction to (ii). This shows y0 /∈ Y2 ∪ Y3 and thus |Y2| = |Y3| = 1.

(iv) |Xi| = 1 if y0 /∈ Xi for any i ∈ {1, 2} and thus y0 ∈ X1 ∪X2.

Proof of (iv). Suppose that for some i ∈ {1, 2}, y0 /∈ Xi and |Xi| ≥ 2. WLOG assume 
i = 1. Let x1j be the end of e1j in X1 for j = 1, 2, 3. Since |X1| ≥ 2 and since Δ(G) = 3
and G is connected by Claim 1, x11 �= x1j for some j ∈ {2, 3}. Note that x11, x1j ∈
V (Cj). Since |δG(X1)| = 3 and G[X1] is balanced, by Claim 4, there is an (x11, x1j)-
path in X1 containing a 2-vertex. So Cj contains a 2-vertex in X1 by the maximality 
of |V (Cj) ∩ V2(G)|. Since dG(yj) = 2 and Cj contains yj , V (C3) contains at least two 
2-vertices, a contradiction to (ii). This proves that |Xi| = 1 if y0 /∈ Xi for any i ∈ {1, 2}.

If y0 /∈ X1 ∪X2, then |X1| = |X2| = 1. By (iii), G[Y2 ∪ Y3 ∪X1 ∪X2] is a balanced 
4-circuit, a contradiction to (S4). Therefore y0 ∈ X1 ∪X2.
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Fig. 3. G′ = G − Int(P ) − E(P ).

By (iv), WLOG assume y0 ∈ X1. Then by (iv) and (iii), |X2| = |Y2| = |Y3| = 1. 
Denote X2 = {x2}.

(v) Y1 = {y1}.

Proof of (v). Suppose to the contrary that Y1 �= {y1}. Then |Y1| ≥ 2. Note that Δ(G′) ≤
Δ(G) = 3. Since G′ is 2-connected and δG′(Y1) = {e11, e21}, the ends of e11 and e21 in Y1

are different. Let C4 be a circuit in G′ containing all the edges in {e11, e12, e22, e21} such 
that |V (C4) ∩ V2(G)| is as large as possible. Since G[Y1] is balanced and |δG(Y1)| = 3, 
with a similar argument in (iv), C4 contains a 2-vertex in Y1 and also contains the 
2-vertex y2. Thus C4 contains at least two 2-vertices and hence is removable. Since 
δG(Y1) ∩ E(C4) = {e11, e21} and |δG(Y1)| = 3, G − V (C4) is balanced. Since C4 does 
not contain e0, the only negative edge, C4 is balanced, meaning σ(C4) = 1 = ε, a 
contradiction to Claim 2-(2b). This completes the proof of (v).

Let x11, x12 and x13 be the ends of e11, e12 and e13 in X1, respectively. By (S4), 
G[{x12, x13, x2, y2, y3}] is not a 4-circuit, so x12 �= x13. Together with (iii), (iv), and (v), 
the structure of G′ is shown in Fig. 3.

Now we can complete the proof of Claim 8.
Recall that G′[X1] is connected. If there is an (x12, x13)-path P in G′[X1] containing 

y0, then C5 = P ∪ {e12, e22, e23, e13} is a circuit containing y0 and two 2-vertices y2, y3, 
a contradiction to (i). Hence by Menger’s Theorem, G′[X1] = G[X1] has a cut-edge 
separating y0 from {x12, x13}.

Let B1 be the maximal 2-connected subgraphs in G[X1] containing y0. Then every 
edge in δG[X1](V (B1)) is a cut-edge of G[X1] by the maximality of B1. Since G[X1]
has a cut-edge separating y0 from {x12, x13}, x12 and x13 are in the same component, 
denoted by B2, of G[X1] −V (B1). Since G′ is 2-connected and δG′(X1) = {e11, e12, e13}, 
x11 /∈ V (B2). Let δG[X1](V (B2)) = {e′} and z be the end of e′ in B2. Then there exists 
an (x11, z)-path P ′ in G′[X1] containing y0.

Recall that x12 �= x13. WLOG assume z �= x13. Since δG(V (B2)) = {e12, e13, e′} and 
B2 is balanced and has at least two vertices, by Claim 4, B2 has a (z, x13)-path P ′′

containing at least one vertex in V2(G). Then C6 = P ′ ∪ P ′′ ∪ x13y3x2y1x11 is a circuit 
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containing at least two 2-vertices and y0, a contradiction to (i). This completes the proof 
of Claim 8. �

By Claim 8, ε(G) = |EN (G)| ≥ 2. Denote ε(G) = k. By Claims 1 and 6 and The-
orem 6.8, we can choose a minimum subset S ⊆ E(G) \ EN (G) such that H = G/S

satisfies the following properties:

(i) Δ(H) ≤ 3;
(ii) H −EN (H) −∪e∈EN (H)Int(Pe) is a 2-connected planar graph with a facial circuit 

C, where Pe is the maximal subdivided edge in H containing e;
(iii) x1, . . . , xk, xk+1, . . . , x2k are pairwise distinct and lie in that cyclic order on C, 

where EN (H) = EN (G) = {e1, . . . , ek} and xi, xk+i are the two ends of Pei for each 
i ∈ [1, k].

For each v ∈ V (H), let Gv denote the corresponding component of G −E(H). Note 
that Δ(Gv) ≤ Δ(G) = 3. By the minimality of S, Gv is 2-connected. Otherwise we choose 
S \Sv to replace S, where Sv is the set of cut-edges of Gv. Moreover, S = ∪v∈V (H)E(Gv)
and E(G) = E(H) ∪ S.

Claim 9. k = 2 and |Int(Pe1)| + |Int(Pe2)| = 1.

Proof of Claim 9. Since k ≥ 2, it is easy to see H − {x} contains an unbalanced theta 
for any vertex x with dH(x) = 2. Thus by Claim 3 and by the minimality of S, we have 
that if dH(x) = 2 then Gx = {x}.

We construct a circuit CH in the following cases. If there are distinct i, j ∈ [1, k] such 
that |Int(Pei)| = |Int(Pej )| = 0, let CH = C; If |Int(Pei)| + |Int(Pei+1)| ≥ 2 for some 
i ∈ [1, k], let CH = C − E(xiCxi+1) − E(xi+kCxi+k+1) + Pei + Pei+1 . Note that Gv is 
2-connected for any v ∈ V (H), Δ(H) ≤ 3 and Δ(G) = 3. Then CH can be extended to 
a removable circuit CG of G such that σ(CG) = 1 = ε and G − V (CG) is also balanced, 
a contradiction to Claim 2-(2b). This completes the proof of the claim. �

WLOG assume that Int(Pe1) = ∅ and Int(Pe2) = {y} by Claim 9. Then Pe1 = x1x3
and Pe2 = x2yx4. Denote Ai = xiCxi+1 (mod 4) for i ∈ [1, 4], C1 = Pe1 ∪A1∪Pe2 ∪A3, 
and C2 = Pe1 ∪ A4 ∪ Pe2 ∪ A2. Note that both C1 and C2 contain the 2-vertex y. See 
Fig. 4.

Claim 10. H = G and V2(G) = {y}.

Proof of Claim 10. As noted in the proof of Claim 9, for each x with dH(x) = 2, Gx =
{x}. In particular, Gy = {y}.

Note that Gx is balanced and |δG(Gx)| ≤ 3 for every x ∈ V (H). Thus by Claim 4, we 
have the following fact:
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Fig. 4. C1 and C2 in C ∪ Pe1 ∪ Pe2 .

(a) If Gx is nontrivial, then for each two distinct ends u, v in V (Gx) of δG(Gx), there 
is an (u, v)-path in Gx containing at least one vertex in V2.

Let x ∈ V (C). WLOG assume x ∈ V (C1). Note that if dH(x) = 2, then dG(x) = 2. 
Thus, if dH(x) = 2 or if Gx is nontrivial, C1 can be extended to a circuit C ′

1 of G such 
that C ′

1 contains the 2-vertex y and one 2-vertex in Gx (the latter case follows from (a)). 
Hence C ′

1 is removable, σ(C ′
1) = 1 = ε, and G − V (C ′

1) is balanced, a contradiction to 
Claim 2-(2b). Therefore dH(x) = 3 and Gx = {x} for each x ∈ V (C).

Next we show that y is the only 2-vertex in G. Suppose to the contrary that u is a 
2-vertex in G. Then u /∈ V (C). Since G is 2-connected, there are two internally disjoint 
(u, C)-paths Q1 and Q2 in G with v1 and v2 the end vertices in C respectively. Since 
Δ(G) = 3, v1 �= v2. Let C3 = Q1 ∪ Q2 ∪ v1Cv2 and C4 ∈ {C1, C2} such that V (C4) ∩
{v1, v2} �= ∅. Then C ′ = C3ΔC4 is a circuit containing two 2-vertices {y, u} and the two 
negative edges. Thus C ′ is removable, σ(C ′

1) = 1 = ε, and G − V (C ′) is balanced, which 
contradicts Claim 2-(2b). Thus V2(G) = {y}.

Since V2(G) = {y}, Gx is trivial by (a). Therefore H = G. �
Claim 11. Int(Ai) �= ∅ for each i ∈ [1, 4].

Proof of Claim 11. Suppose to the contrary that Int(Ai) �= ∅ for some i ∈ [1, 4]. WLOG 
assume Int(A1) = ∅. Then A1 is a chord in U(C2). Since C2 contains the 2-vertex y, 
C2 is removable, which contradicts Claim 2-(2b) since σ(C2) = 1 = ε and G − V (C2) is 
balanced. �
The final step.

By Claim 11, let y1 ∈ Int(A1) be the neighbor of x1. Let Q be the component of 
G − E(C) containing y1. Since dG(y1) = 3 by Claim 10, Q is nontrivial. Obviously, 
V (Q) ∩ {x1, x2, x3, x4} = ∅ since Δ(G) = 3.
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If there is a vertex y2 in V (Q) ∩ (Int(A2) ∪ Int(A3)), let P be a (y1, y2)-path in Q. 
Since Δ(G) ≤ 3, C3 = P ∪ y1Cy2 is a circuit containing x2. Then C ′ = C2 � C3 is a 
circuit of G containing y and the chord x1y1 ∈ U(C ′). Thus C ′ is a removable circuit of 
G, a contradiction to Claim 2-(2b) since G − V (C ′) is balanced.

If V (Q) ∩ (Int(A2) ∪ Int(A3)) = ∅, then V (Q) ∩ V (C) ⊆ Int(A4) ∪ Int(A1). Note 
that |V (Q) ∩ V (C)| ≥ 2 since G is 2-connected. Let y2, y3 ∈ V (Q) ∩ V (C) be two 
ends of a segment P ′ of A4 ∪ A1 such that the length of P ′ is as large as possible. By 
Claim 10, G′ = G − x1x3 − y is a 2-connected planar graph with a facial circuit C, 
and so T ′ = δG′(V (P ′)) ∩ E(C) is a 2-edge-cut of G′. Let T = T ′ if y2, y3 ∈ Int(A1), 
and otherwise T = T ′ ∪ {x1x3}. Then T is an edge-cut of G with |T | ≤ 3 and the 
component, denoted by R, of G −T containing y2 is balanced and doesn’t contain y. Since 
|δG(V (R))| = |T | ≤ 3, by (S3), 

∑
v∈V (R)(3 −dG(v)) ≥ 4 −|δG(V (R))| −2|U(R)| ≥ 1, and 

so this component R contains a 2-vertex (distinct from y), which contradicts V2(G) = {y}
by Claim 10. This completes the proof of Lemma 6.13. �
6.3. Completing the proof of Theorem 1.3

Finally we are to complete the proof of Theorem 1.3 in this subsection.
By Lemma 6.6, it suffices to show that every cubic shrubbery G admits a balanced 

Z2 × Z3-NZF. If G is balanced, then such a flow exists by Theorem 6.2.
Assume that G is unbalanced. We claim that G contains either an unbalanced theta 

or a negative loop.
If G is 2-connected, then for any unbalanced circuit C, we can easily find a path in 

G −E(C) to connect two distinct vertices of V (C), and thus G has an unbalanced theta.
If G is not 2-connected, then it has an cut-edge since G is cubic. Let B be a leaf block 

of G. If B is trivial, then B is a negative loop. If B is nontrivial, then B is unbalanced by 
Proposition 2.2 since G is flow-admissible by (S2). Since B is 2-connected and all vertex 
except one has degree 3, similar to the argument in the case when G is 2-connected, one 
can find an unbalanced theta in B, which is also an unbalanced theta in G.

By the claim, we apply Lemma 6.13 on cubic shrubbery G with ε = 1 to obtain 
an NZF f = (f1, f2) with σ(supp(f1)) = ε = 1. By Definition 6.10 this is a balanced 
Z2 × Z3-NZF as desired. This completes the proof of Theorem 1.3.
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