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Abstract

Let S T, be two distinct finite Abelian groups with

S T| | = | |. A fundamental theorem of Tutte shows

that a graph admits a nowhere‐zero S‐flow if and

only if it admits a nowhere‐zero T ‐flow. Jaeger et al

in 1992 introduced group connectivity as an exten-

sion of flow theory, and they asked whether such a

relation holds for group connectivity analogy. It was

negatively answered by Hušek et al in 2017 for

graphs with edge‐connectivity 2 for the groups

S = 4 and T = 2
2. In this paper, we extend their

results to 3‐edge‐connected graphs (including both

cubic and general graphs), which answers open

problems proposed by Hušek et al and Lai et al.

Combining some previous results, this characterizes

all the equivalence of group connectivity under 3‐
edge‐connectivity, showing that every 3‐edge‐
connected S‐connected graph is T ‐connected if and

only if  S T{ , } { , }4 2
2≠ .
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1 | INTRODUCTION

Graphs considered in this paper are finite and loopless, with possible parallel edges. Throughout
this paper, let S T, be (additive) Abelian groups, and k the cyclic group of order k. We follow [1]
for undefined notation and terminology. Fix an orientation D of a graph G. For any x V G( )∈ ,
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let E x( )D
+ (E x( )D

− , resp.) denote the set of all edges directed away from (into, resp.) x .
Given a mapping φ E G S: ( ) ↦ , define, for every vertex u V G( )∈ ,

φ u φ e φ e( ) = ( ) − ( ).
e E u e E u( ) ( )D D

+ −

∑ ∑∂
∈ ∈

Evidently, we have φ u( ) = 0
u V G( )

∑ ∂
∈

since each directed edge is counted exactly once in both
its head and tail. A zero‐sum boundary function is a mapping γ V G S: ( ) ↦ satisfying

γ u( ) = 0
u V G( )

∑
∈

, which is necessary for the existence of such mapping φ with φ γ=∂ . Let
G S( , ) denote the collection of all zero‐sum boundary functions ofG. A group flow, S‐flow, of

G is a mapping φ E G S: ( ) ↦ with φ 0=∂ , where G S0 ( , )∈ denotes the constant zero
mapping. If φ e( ) 0≠ for each edge e E G( )∈ , then φ is called a nowhere‐zero S‐flow, ab-
breviated as S‐NZF. When S = and φ e k0 < | ( )| < for any e E G( )∈ , it is known as a
nowhere‐zero k‐flow, abbreviated as k‐NZF.

The flow theory was initiated by Tutte [16] in studying face coloring problems of graphs on the
plane and other surfaces. Tutte [16] proposed some flow conjectures, which are considered as core
problems in graph theory. Tutte's 3‐flow and 5‐flow conjectures predict the existence of flow for given
edge‐connectivity 4 and 2, respectively, regardless the topological embedding structures of graphs. The
4‐flow conjecture [17], generalizing the celebrated Four Coloring Theorem, asserts every Petersen‐
minor‐free graph admits a 4‐NZF. Those problems are widely studied and remain open, while sig-
nificant progress have been made by Jaeger [5], Seymour [14], Thomassen [15], and Lovász et al [13].
We refer to [11] for a recent survey on those topics. One of the critical tools in studying nowhere‐zero
flows is the following fundamental theorem of Tutte [17], converting group flows into integer flows.

Theorem 1.1 (Tutte [17]). A graph admits a k‐NZF if and only if it admits an S‐NZF for
some Abelian group S with S k| | = .

The advantage of group flows is to provide much more flexibility in proving related integer flow
theorems, which allows to use certain contraction operations and local adjustments on graphs. To
facilitate this approach, Jaeger et al [6] introduced group connectivity concept as a generalization
of S‐flow. If for every γ G S( , )∈ , there is a mapping φ E G S: ( ) \ {0}↦ such that φ γ=∂ , thenG
is called S‐connected. Due to certain stronger conditions in group connectivity, some nice
properties of flows can not be easily extended to group connectivity. For example, the mono-
tonicity fails for group connectivity. It follows from the definition that every k‐NZF admissible
graph has a k( + 1)‐NZF, and so by Theorem 1.1 everyT ‐NZF admissible graph has an S‐NZF for
any finite Abelian groups S T, with S T| | | |≥ . However, Jaeger et al [6] showed that there exist 5‐
connected graphs which are not6‐connected, and similar examples were exhibited for some other
large groups of prime order. On the positive side, an unusual monotonicity of group connectivity
was proved in [12] that every 3‐connected graph is S‐connected for S| | 4≥ .

For two distinct finite Abelian groups S T, with the same order, Jaeger et al [6] asked
whether S‐connectivity and T ‐connectivity are equivalent, similar as Theorem 1.1, and they
remarked that it is even unknown for the first case concerning 4 and 2

2. Lai et al [10] further
proposed the problem below for 3‐edge‐connected graphs.

Problem 1.2 (Problem 1.8 in Lai et al [10]). Let S( ) be the family of all 3‐edge‐
connected S‐connected graphs. Is it true that for two Abelian groups S1 and S2, if
S S| | = | |1 2 , then
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S S( ) = ( )?1 2 

With a computer‐aided approach, Hušek et al [4] constructed 2‐edge‐connected graphs to
show that 4‐connectivity and 2

2‐connectivity are not equivalent and obtained the following
theorem, which provides a negative answer to the question of Jaeger et al [6].

Theorem 1.3 (Hušek et al [4]). Denote by H H,1 2 as the graphs depicted in Figure 1.

(1) The graph H1 is 2
2‐connected but not 4‐connected.

(2) The graph H2 is 4‐connected but not 2
2‐connected.

Furthermore, infinitely many such examples can be constructed by replacing some vertices
with triangles repeatedly.

By developing a 2‐sum operation for group connectivity (as defined below), we extend
Theorem 1.3 to 3‐edge‐connected graphs.

Theorem 1.4.

(1) There exists a 3‐edge‐connected graph which is 4‐connected but not 2
2‐connected.

(2) There exists a 3‐edge‐connected graph which is 2
2‐connected but not 4‐connected.

Furthermore, infinitely many such graphs can be generated by a number of 2‐sum
operations.

It is worth noting that our proof of Theorem 1.4 is theoretical, although it assumes the truth
of Theorem 1.3 (whose proof is computer‐aided).

Extending Jaeger's 4‐flow theorem and Seymour's 6‐flow theorem, Jaeger et al [6] obtained
the following group connectivity analogy.

Theorem 1.5 (Jaeger et al [6]).

(i) Every 4‐edge‐connected graph is S‐connected for S| | 4≥ .
(ii) Every 3‐edge‐connected graph is S‐connected for S| | 6≥ .

FIGURE 1 The graphs for Theorem 1.3
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Combining Theorems 1.4 and 1.5, we immediately have the following corollary, char-
acterizing the equivalence of group connectivity for all 3‐edge‐connected graphs completely.
This answers Problem 1.2.

Corollary 1.6. Let S T, be two distinct Abelian groups with S T| | = | |. Then every 3‐edge‐
connected S‐connected graph is T ‐connected if and only if  S T{ , } { , }4 2

2≠ .

In [4], Hušek et al also asked whether such 3‐edge‐connected cubic graphs exist. In fact,
Theorem 1.4 was obtained in early 2018, and the second author communicated with Robert
Šámal in SIAM Conference on Discrete Mathematics, Denver, June 2018. The existence of such
3‐edge‐connected cubic graphs was still open for a while, see Section 5 in Hušek et al [4]. Now
we are able to solve it by a new construction method.

Theorem 1.7.

(1) There exists a 3‐edge‐connected cubic graph which is 4‐connected but not 2
2‐connected.

(2) There exists a 3‐edge‐connected cubic graph which is 2
2‐connected but not 4‐connected.

Moreover, infinitely many such graphs can be constructed by substituting some vertices with
triangles repeatedly.

The paper is organized as follows. In Section 2 we first develop a 2‐sum operation for group
connectivity and use it to prove Theorem 1.4. Then in Section 3 we apply a new method to
construct such cubic graphs through flow properties of two special graphs. In Section 4, we end
this paper with a few concluding remarks.

2 | CONSTRUCTIONS VIA 2 ‐SUM OPERATIONS

For i1 2≤ ≤ , let Γi be a graph with two distinct vertices u v V, (Γ)i i i∈ . If u v E (Γ )1 1 1∈ , then we
define u v u vΓ = Γ ( ) Γ ( , )1 1 1 2 2 2⊕ , called the 2‐sum of Γ1 and Γ2, as the graph obtained from Γ1 and
Γ2 by removing the edge u v1 1 in Γ1, and then identifying u1 and u2 as a new vertex u, and
identifying v1 and v2 as a new vertex v (see Figure 2).

This 2‐sum operation can be viewed as a dual operation of Hajós join on graph coloring. It
was first developed by Kochol [7] in studying 3‐flow problem, and later generalized to
3‐connectivity in [3]. Here we extend this 2‐sum property to group connectivity of arbitrary
finite Abelian groups.

FIGURE 2 The 2‐sum u v u vΓ = Γ ( ) Γ ( , )1 1 1 2 2 2⊕
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Lemma 2.1. Let S be a finite Abelian group with S| | 3≥ . If neither Γ1 nor Γ2 is
S‐connected, then Γ = Γ Γ1 2⊕ is not S‐connected.

Proof. Let u v V, (Γ)∈ and u v V, (Γ)i i i∈ , where i = 1, 2 as defined above. That is,
u v u vΓ = Γ ( ) Γ ( , )1 1 1 2 2 2⊕ . Since Γi is not S‐connected for each i {1, 2}∈ , there exists a

β S(Γ , )i i∈ such that for any orientation of Γi and any mapping φ E S: (Γ) \ {0}i i ↦ , we
have φ βi i∂ ≠ .

For each z V (Γ)∈ , define

ε z

β u β u z u

β v β v z v

β z z V u v

β z

( ) =

( ) + ( ) if = ;

( ) + ( ) if = ;

( ) if (Γ ) \ { , };

( ) otherwise .

1 1 2 2

1 1 2 2

1 1 1 1

2

⎧
⎨
⎪⎪

⎩
⎪⎪

∈

It is routine to check that ε z β x β y( ) = ( ) + ( ) = 0
z V x V y V(Γ) (Γ ) 1 (Γ ) 21 2

∑ ∑ ∑
∈ ∈ ∈

, and
so ε S(Γ, )∈ .

Suppose, on the contrary, that Γ is S‐connected. Fix an orientation D of Γ. Then there
exists a mapping η E S: (Γ) \ {0}↦ such that η ε=∂ . In particular, we have

η e η e η u ε u( ) − ( ) = ( ) = ( )
e E u e E u( ) ( )D D

+ −

∑ ∑ ∂
∈ ∈

and

η e η e η v ε v( ) − ( ) = ( ) = ( ).
e E v e E v( ) ( )D D

+ −

∑ ∑ ∂
∈ ∈

Let D2 be the restriction of D in Γ2. Consider D2 and η on Γ2. As
η z β z z V u v( ) = ( ), (Γ ) \ { , }2 2 2 2∂ ∀ ∈ , we have

η u η v η z

β z

β u β v

( ) + ( ) = 0 − ( )

= 0 − ( )

= ( ) + ( ).

z V u v

z V u v

2 2

(Γ ) \ { , }

(Γ ) \ { , }

2

2 2 2 2

2 2 2

2 2 2

∑

∑

∂ ∂ ∂
∈

∈

Since φ β2∂ ≠ for any mapping φ E S: (Γ ) \ {0}2 ↦ , it follows that η β2∂ ≠ , and so
η u β u( ) ( )2 2 2∂ ≠ from the above equation. Thus there exists a nonzero element b S∈ such
that η u β u b( ) = ( ) +2 2 2∂ and η v β v b( ) = ( ) −2 2 2∂ in Γ2.

Now consider η and D1, the restriction of D on u vΓ −1 1 1. We have

η u ε u β u b β u β u β u b β u b( ) = ( ) − [ ( ) + ] = [ ( ) + ( )] − [ ( ) + ] = ( ) −1 2 2 1 1 2 2 2 2 1 1∂

and

η v ε v β v b β v b( ) = ( ) − [ ( ) − ] = ( ) + .1 2 2 1 1∂
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We orient the edge u v1 1 from u1 to v1 in Γ1. Together with D1, this gives an orientation
D1
′ of Γ1. Define a mapping ω E S: (Γ ) \ {0}1 ↦ such that, for every e E (Γ )1∈ ,

ω e
b e u v

η e
( ) =

if = ;

( ) otherwise .
1 1

⎧⎨⎩
Then ω z η z β z z V u v( ) = ( ) = ( ), (Γ )\ { , }1 1 1 1∂ ∂ ∀ ∈ . Moreover, ω u η u ω u v( ) = ( ) + ( ) =1 1 1 1∂ ∂

β u( )1 1 and ω v η v ω u v β v( ) = ( ) − ( ) = ( )1 1 1 1 1 1∂ ∂ . Conclude that ω β= 1∂ , which is a
contradiction. □

For X E G( )⊆ , the contraction G X/ is the graph obtained by identifying the two ends of
each edge in X and then deleting the resulting loops fromG. If H is a subgraph ofG,G H/ is used
to representG E H/ ( ) for short. For proving S‐connectivity, the following lemma would be helpful.

Lemma 2.2 (Lai [9]).

(1) A cycle Cn of length n is S‐connected if and only if S n| | + 1≥ .
(2) If H is an S‐connected subgraph of a graphG, thenG is S‐connected if and only if G H/

is S‐connected.

A vertex of degree k is called a k‐vertex. Let C4 be a 4‐cycle with V C v v v v( ) = { , , , }4 4 3 2 1 . Fix
i {1, 2}∈ . In Figure 1, observe that there are exactly three 2‐vertices, denoted by x y z, ,i i i in Hi.
Attach two copies of Hi, namely Hi and Hi

′ (whose corresponding 2‐vertices are x y z, ,′i i i
′ ′). Let Hi

1

be the graph obtained from C4 and Hi by the 2‐sum operation on v v1 2 and x y,i i, namely
H C v v H x y= ( ) ( , )i i i i

1
4 1 2 ⊕ . Construct a graph Hi

2 from Hi
1 and Hi

′ by the 2‐sum operation on
v v4 3 and x y,i i

′ ′, that is, H H v v H x y= ( ) ( , )i i i i i
2 1

4 3
′ ′ ′⊕ . See Figure 3 for the construction of H1

2.

Lemma 2.3.

(1) The graph H1
2 is 2

2‐connected, but not 4‐connected.
(2) The graph H2

2 is 4‐connected, but not 2
2‐connected.

Proof.

(1) By Theorem 1.3, H1 and H′1 are 2
2‐connected. Notice that

H H H C v v v v C( / )/ = ( / )/ = ,1
2

1 1
′

4 1 2 3 4 2

which is 2
2‐connected. By Lemma 2.2 we see that H H/1

2
1 is 2

2‐connected. As H1 is 2
2‐

connected and by Lemma 2.2 again, H1
2 is 2

2‐connected as desired. Since

FIGURE 3 The graph H1
2 in Lemma 2.3
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H C v v H x y= ( ) ( , )1
1

4 1 2 1 1 1⊕ is obtained from the 2‐sum of two non‐2
2‐connected

graphs C4 and H1, we know that H1
1 is not 2

2‐connected by Lemma 2.1. Similarly, as
H H v v H x y= ( ) ( , )1

2
1
1

4 3 1
′

1
′

1
′⊕ , where neither H1

1 nor H1
′ is 2

2‐connected, it follows from
Lemma 2.1 that H1

2 is not 2
2‐connected either.

(2) The proof is very similar to (1). Since H2 is 4‐connected, but not 2
2‐connected, after

applying the 2‐sum operation twice, the resulting graph H2
2 is 4‐connected by

Lemma 2.2, but not 2
2‐connected by Lemma 2.1. □

Note that, by the construction above, the graph Hi
2, for each i {1, 2}∈ , has precisely two vertices

zi and zi
′ of degree two. Now we would construct H C H H H i= , {1, 2}i i i i

3
4

2 2 2⊕ ⊕ ⊕ ∈ , that
would be used in the following theorem. The way to construct H2

3 from H2
2 is the same as con-

structing H1
3 from H1

2. So we take H1
3 as an example. Attach three copies of H1

2, whose 2‐vertices are
denoted by z z z z, , ,1 1

′
2 2

′ and z z,3 3
′ , respectively. Apply the 2‐sum operation three times onC4 and the

copies of H1
2. Specifically, we first apply 2‐sum on the edge v v1 2 with z z,1 1

′ in the first copy of H1
2,

then apply 2‐sum on the edge v v2 3 with z z,2 2
′ in the second copy, and apply the last 2‐sum on the

edge v v3 4 with z z,3 3
′ in the third copy, as demonstrated in Figure 4. This gives the resulting graphH1

3.

Theorem 2.4.

(1) The graph H1
3 is 3‐edge‐connected, 2

2‐connected, but not 4‐connected.
(2) The graph H2

3 is 3‐edge‐connected, 4‐connected, but not 2
2‐connected.

Proof.

(1) As H1
2 is 2

2‐connected and, after contracting copies of H1
2 in H1

3, the resulting graph is
a singleton which is 2

2‐connected, we conclude by Lemma 2.2 that H1
3 is 2

2‐
connected. Since H1

3 is obtained from 2‐sum operation of non‐4‐connected graphs,
Lemma 2.1 shows that it is not 4‐connected.

It is also very straightforward to verify that H1
3 is 3‐edge‐connected. Firstly, one can

easily check that H1 has only three trivial 2‐edge‐cuts. Second, the graph H1
2, obtained

from 2‐sum of C4 and two copies of H1, has exactly three 2‐edge‐cuts, each of which
separates z1 and z1

′. At last, we can use these facts to show that H1
3 is 3‐edge‐connected

as follows. Specifically, the minimal degree of H1
3 is three, so we only look at nontrivial

edge‐cuts. If an edge‐cut separates zk and zk′ for some k {1, 2, 3}∈ in a copy of H1
2, then

it has a size at least 3 since we need at least two edges to separate zk and zk
′ in the copy

of H1
2 and there is a z zk k

′ ‐path outside that copy. Assume instead, an edge‐cut does not

FIGURE 4 H :1
3 Graph of Theorem 2.4 (1)
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separate zk and zk
′ for any k {1, 2, 3}∈ . Then either it lies in the edges incident to

V C( )4 , or it separates a copy of H1
2 (where zk and zk

′ are in one component). In each
case, the edge‐cut must have a size at least 3. This proves that H1

3 is 3‐edge‐connected.
(2) The proof applies the same argument as (1) and thus omitted.

Now Theorem 1.4 follows from Theorem 2.4 and Lemma 2.1. □

3 | CONSTRUCTIONS OF CUBIC GRAPHS

The constructions in this section rely on some basic properties of K4 and 3‐prism (see Figure 5),
as shown in the following lemmas.

Lemma 3.1. Let G be the complete graph K4 with an orientation D. Define
β V G: ( ) {1}↦ , which is a zero‐sum boundary function in G( , )4 . Then for any
mapping φ E G: ( ) \ {0}4↦ with φ β=∂ , there exists a vertex v of G such that each edge
e uv E G= ( )∈ is either directed into v with flow value φ e( ) = 1 or directed away from v

with flow value φ e( ) = 3.

Proof. Since 3 = −1(mod 4), for convenience we may assign the flow value of edges in
{1, 2} and adapt an appropriate orientation from D. By contradiction, suppose that there
exists an orientation ofG and a mapping φ E G: ( ) {1, 2}↦ with φ β=∂ such that no vertex
satisfies that all incident edges are directed into it and with flow value 1. Since for any
v V G( )∈ , the degree of v is 3 and β v( ) = 1, there is at least one edge e assigned with flow
value φ e( ) = 1. By symmetry, assume φ v v( ) = 11 2 and the orientation is from v1 to v2 as in
Figure 5 (1). Since β v( ) = 12 , we must have φ v v φ v v( ) = ( ) = 12 3 2 4 and v v v v,2 3 2 4 are all
directed away from v2. The similar assignments are applied for v v3 1 and v v3 4. At last, we
need only to assign the orientation and flow value of v v1 4 to satisfy β φ= ∂ . We shall find
that all the edges incident to v4 are directed into v4 with flow value 1, a contradiction. □

A 3‐prism is a graph obtained by adding a perfect matching between two vertex‐disjoint
triangles (see Figure 5(2)).

Lemma 3.2. The 3‐prism graph is unique 3‐edge‐colorable. (That is, all proper 3‐edge‐
colorings ϕ E G a b c: ( ) { , , }↦ are isomorphic. See Figure 5(2)).

Proof. This fact is easy to observe and thus omitted. □

FIGURE 5 A 4‐flow of K4 with boundary 1 and a 3‐prism
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Now we shall prove Theorem 1.7 with the following constructions.

Theorem 3.3. Construct a graph G by replacing every vertex of K4 with a copy of H1,
where every 2‐vertex in each copy is incident with an edge of K4 (see Figure 6). Then the
3‐edge‐connected cubic graph G is 2

2‐connected, but not 4‐connected.

Proof. Clearly, G is 3‐edge‐connected. It follows from Lemma 2.2(1) that C2 and C3 are
2

2‐connected, thus by Lemma 2.2(2) K4 is 2
2‐connected by contracting 3‐cycles and

2‐cycles consecutively. By Lemma 2.2 again, G is 2
2‐connected since both H1 and K4 are

2
2‐connected. We shall prove below thatG is not 4‐connected. For i1 4≤ ≤ , let Ai be a

copy of H1, where the 2‐vertices of Ai are x y,i i and zi (see Figure 6). Since H1 is not
4‐connected, there is a failed zero‐sum boundary β H( , )1 1 4∈ such that


H

φ E H φ β

for any orientation of ,

there is no mapping : ( ) \ {0} such that = .

1

1 4 1↦ ∂
(1)

Suppose, on the contrary, that G is 4‐connected. Define β V G: ( ) 4↦ by

β v
β v v x y z i

β v
( ) =

( ) − 1 if { , , |1 4};

( ) otherwise .

i i i1

1

⎧⎨⎩
∈ ≤ ≤

Since β v( ) 0 (mod 4)
v V A( ) 1i

∑ ≡
∈

for each i, we have

β v β v( ) = 4 ( ) − 12 0 (mod 4),
v V G v V A( ) ( )

1

1

∑ ∑ ≡
∈ ∈

and so β G( , )4∈ . Hence there is an orientation of G and a mapping
f E G: ( ) \ {0}4↦ such that f β=∂ .

Consider the graph F G A= /{ }i i1 4⋃ ≤ ≤ , which is a K4. Suppose wi of V F( ) is the vertex
corresponds to Ai. Let

β w β v β v′( ) = ( ) = ( ) − 3 = 1(mod 4).i

v V A v V A( ) ( )

1

i i

∑ ∑
∈ ∈

FIGURE 6 A 3‐edge‐connected cubic graph that is 2
2‐connected, but not 4‐connected
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Denote f ′ as the restriction of f on F . Obviously, β′ is a zero‐sum boundary of F and
f β′ = ′∂ . By Lemma 3.1, there is a vertex u in F such that each incident edge of u is either
directed into u with flow value 1 or directed away from u with flow value 3. Assume,
without loss of generality, that the vertex u corresponds to A1 in G.

This implies that φ f f= ,A1
∣ restricted to A1, is a mapping such that φ β= 1∂ by the

definition of β, which contradicts (1). Hence G is not 4‐connected. □

In the proof of Theorem 3.3, one may observe that the key ingredient is to apply Lemma 3.1
to show that the flow values outside a copy Ai are uniquely determined, and so the flow
restricted to Ai satisfies the failed zero‐sum boundary, yielding a contradiction. The next
construction is based on the same motivation, for which we apply the property of 3‐prism in
Lemma 3.2 instead.

Let B i(1 6)i ≤ ≤ be a copy of H2, where the 2‐vertices of Bi are x y,i i, and zi.

Theorem 3.4. Assume that the 3‐prism is 3‐edge‐colored with colors a b c, , . Let p q r( , , )i i i

( i1 6≤ ≤ ) be all the permutations of a b c, , . Replace each vertex of the 3‐prism with a copy
Bi of H1, where the vertex‐triple x y z( , , )i i i is identified with edges incident to that vertex with
color‐triple p q r( , , )i i i for each i1 6≤ ≤ . LetG be the resulting graph. See Figure 7. ThenG is
4‐connected, but not 2

2‐connected.

Proof. Since both H2 and the 3‐prism are 4‐connected, the graph G is 4‐connected by
Lemma 2.2. We shall show below that G is not 2

2‐connected. Note that for 2
2‐group

connectivity, the orientation is irrelevant since each element is self‐inverse. Thus we will
omit the statements of orientations. As H2 is not 2

2‐connected, there is a failed boundary
β H( , )1 2 2

2∈ such that

φ E H φ βthere is no mapping : ( ) {(0, 1), (1, 0), (1, 1)} with = .2 1↦ ∂ (2)

FIGURE 7 A 3‐edge‐connected cubic graph that is 4‐connected, but not 2
2‐connected
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Define a function β V G: ( ) 2
2↦ as follows:

β v

β v v x i

β v v y i

β v v z i

β v

( ) =

( ) − (0, 1) if { 1 6};

( ) − (1, 0) if { 1 6};

( ) − (1, 1) if { 1 6};

( ) otherwise .

i

i

i

1

1

1

1

⎧
⎨
⎪⎪

⎩
⎪⎪

∈ ∣ ≤ ≤

∈ ∣ ≤ ≤

∈ ∣ ≤ ≤

Since β v( ) = (0, 0)
v V B( ) 1i

∑
∈

in 2
2 for each i1 6≤ ≤ , we have

β v β v( ) = ( ) − 6[(0, 1) − (1, 0) − (1, 1)] = (0, 0) in ,
v V G i v V B( ) =1

6

( )

1 2
2

i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑

∈ ∈

and thus β G( , )2
2∈ .

By contradiction, suppose that G is 2
2‐connected. So there is a mapping

f E G: ( ) {(0, 1), (1, 0), (1, 1)}↦ such that f β=∂ .
Consider the graph F G B= /{ }i i1 6⋃ ≤ ≤ , which is a 3‐prism. The flow f restricted to it

provides a nowhere‐zero 2
2‐flow, which is indeed a proper 3‐edge‐coloring and the color‐

classes are precisely the edges with values (0, 1), (1, 0), (1, 1), respectively. Hence the
color‐triple a b c( , , ) is a permutation of (0, 1), (1, 0), (1, 1). Notice that edges incident to
the triples of x y z i{ , , |1 6}i i i ≤ ≤ for different i are colored with different permutation of
color‐set a b c{ , , }. So each of the six permutations appears on exactly one vertex. Hence
there exists a triple x y z( , , )k k k corresponding to ((0, 1), (1, 0), (1, 1)), say k = 1 without
loss of generality. That is f x x f y z( ) = (0, 1), ( ) = (1, 0)1 3 1 2 and f z z( ) = (1, 1)1 5 . Now by
definition of β, the mapping f restricted to B φ f, = |B1 1

, is a mapping of H2 such that
φ β= 1∂ , a contradiction to (2). Therefore, G is not 2

2‐connected. □

4 | CONCLUDING REMARKS

Theorem 1.5 of Jaeger et al [6] says that every 4‐edge‐connected graph is S‐connected for
S| | 4≥ . This particularly shows that group connectivity is equivalent for distinct groups of a
same size for 4‐edge‐connected graphs. In fact, the graphs constructed in Theorems 1.4 and 1.7
are far from being 4‐edge‐connected and contain a lot of 3‐edge‐cuts. It would be curious that
whether lowing down the number of 3‐edge‐cuts could guarantee the equivalence relation of
group connectivity.

Problem 4.1. What is the maximum number k such that, for all 3‐edge‐connected
graphs with at most k 3‐edge‐cuts, 2

2‐connectivity and 4‐connectivity are equivalent?

Note that, using a smaller 4‐connected non‐2
2‐connected graph obtained in Section 2 of [4]

(Figure 2 in that paper), the smallest such 3‐edge‐connected graphs that we can construct in
Theorem 1.7 have 48 edge‐cuts of size three, which shows k < 48.

On the other hand, we provide a partial positive result from some known results on col-
lapsible graphs (which are contractible graphs for Eulerian subgraph problem). A graph G is
collapsible if for any N V G( )⊆ of even order, there is a spanning connected subgraph of
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G whose vertices have degree exactly odd in N and even otherwise. Lai [8] showed that every
collapsible graph is both 4‐connected and 2

2‐connected. Moreover, it was proved in [2] that
every 3‐edge‐connected graph with at most nine 3‐edge‐cuts is collapsible, and therefore, both
4‐connected and 2

2‐connected. Hence, we conclude that

k9 47.≤ ≤

It would also be interesting to find the smallest 4‐connected non‐2
2‐connected graphs (with

edge‐connectivity 3), and the other way around. This may help to solve Problem 4.1.
In this paper, Corollary 1.6 completely answers the equivalence of group connectivity for

3‐edge‐connected graphs. The dual problem on graph coloring is still open, see [10]. Is it true
that for distinct groups S andT with a same order, S‐group‐colorability andT ‐group‐colorability
are equivalent (for simple graphs)?
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