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a b s t r a c t

We study the flow extension of graphs, i.e., pre-assigning a
partial flow on the edges incident to a given vertex and aiming
to extend to the entire graph. This is closely related to Tutte’s
3-flow conjecture(1972) that every 4-edge-connected graph ad-
mits a nowhere-zero 3-flow and a Z3-group connectivity conjec-
ture(3GCC) of Jaeger, Linial, Payan, and Tarsi(1992) that every
5-edge-connected graph G is Z3-connected. Our main results
show that these conjectures are equivalent to their natural
flow extension versions and present some applications. The
3-flow case gives an alternative proof of Kochol’s result(2001)
that Tutte’s 3-flow conjecture is equivalent to its restriction on
5-edge-connected graphs and is implied by the 3GCC. It also
shows a new fact that Grötzsch’s theorem (that triangle-free
planar graphs are 3-colorable) is equivalent to its seemly weaker
girth five case that planar graphs of girth 5 are 3-colorable. Our
methods allow to verify 3GCC for graphs with crossing number
one, which is in fact reduced to the planar case proved by
Richter, Thomassen and Younger(2017). Other equivalent ver-
sions of 3GCC and related partial results are obtained as well.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We consider finite graphs without loops, but permitting parallel edges. A vertex of degree k is
called a k-vertex. An edge-cut of size k is called a k-cut for convenience, and basically no vertex-cut
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would be involved in this paper. A graph is essentially k-edge-connected if for any t < k, every
t-cut isolates a vertex. In a graph G, a function β : V (G) → Z3 is called a boundary function of G if∑

x∈V (G) β(x) = 0 in Z3. Let Z(G,Z3) be the set of all boundary functions of G. We call an orientation
D of G a β-orientation if it holds that d+

D (v)−d−

D (v) = β(v) in Z3 for every vertex v ∈ V (G). The special
case of β-orientation with β(x) = 0 in Z3 for every vertex x ∈ V (G) is known as a mod 3-orientation
of G. It is well-known (cf. [9,19,20]) that searching for mod 3-orientations is equivalent to finding
nowhere-zero 3-flows in graphs. Tutte’s 3-Flow Conjecture (abbreviated as 3FC) in 1972(see [1]) is
as follows.

3-Flow Conjecture (3FC): Every 4-edge-connected graph admits a nowhere-zero 3-flow.

The 3FC restricted to planar graphs is the dual of Grötzsch’s 3-Coloring Theorem (3CT) that
every triangle-free planar graph is 3-colorable. Applying the famous coloring extension techniques,
Thomassen [14–16] presented short proofs of Grötzsch’s 3CT and extended to its list version, as well
as obtained his elegant 5-list-coloring theorem [13]. Even before Thomassen’s coloring extension
proofs, Steinberg and Younger [12] employed a flow extension method to confirm 3FC for planar and
projective planar graphs, that is to pre-assign certain flow value to edges incident a given vertex and
then to extend it to the entire graph. Motivated by the results of Steinberg and Younger, we say that
a graph G is M3-extendable at z ∈ V (G) if for any pre-orientation D0 of ∂G(z) with d+

D0
(z) ≡ d−

D0
(z)

(mod 3), D0 can be extended to a mod 3-orientation D of G.
Kochol [6] obtained some interesting equivalent versions of the 3FC.

Theorem 1 (Kochol [6]). The following are equivalent.
(i) (3FC) Every 4-edge-connected graph admits a nowhere-zero 3-flow.
(ii) Every 5-edge-connected graph admits a nowhere-zero 3-flow.
(iii) Every 5-edge-connected graph is M3-extendable at every 5-vertex.

A graph G is called Z3-connected if, for every β ∈ Z(G,Z3), there exists a β-orientation in G
(i.e., an orientation D such that d+

D (x) − d−

D (x) ≡ β(x) (mod 3), ∀x ∈ V (G)). This group connectivity
concept was introduced by Jaeger, Linial, Payan, and Tarsi [5] as a nonhomogeneous generalization
of Tutte’s nowhere-zero flow theory [18]. Jaeger et al. [5] posed the following Z3-Group Connectivity
Conjecture, abbreviated as 3GCC.

Z3-Group Connectivity Conjecture (3GCC): Every 5-edge-connected graph is Z3-connected.

The main purpose of this paper is to study some natural flow extension versions of 3FC and 3GCC,
with some additional applications. In particular, using a unified approach, we provide a new proof
of Theorem 1 (different from Kochol’s 2-sum method [6]), and prove that some seemly stronger
versions of 3GCC are actually equivalent to the original version, as shown in Theorem 2 below.
Furthermore, as a byproduct of the new proof of Kochol’s Theorem 1, it also indicates that those
statements are equivalent within planar graphs, which implies that, by duality, Grötzsch’s 3CT is
exactly equivalent to its restriction on girth 5 case. This interesting fact seems not known before
(since Kochol’s arguments [6] need to construct nonplanar graphs).

Similar as the M3-extendability on mod 3-orientations, there is an analogous pre-orientation
extension concept for Z3-group connectivity. This technique is notably one of the key ideas in the
proof of Weak 3-Flow Conjecture by Thomassen [17], and subsequently improvement by Lovász,
Thomassen, Wu and Zhang [9]. A graph is called Z3-extendable at x, if for any β ∈ Z(G,Z3) and
any pre-orientation Dx of ∂G(x) with d+

Dx
(x) − d−

Dx
(x) ≡ β(x) (mod 3), Dx can be extended to a

β-orientation D of G. A graph is Z3-reduced if it contains no Z3-connected subgraph of order at
least two. We show the following statements are all equivalent to 3GCC, some of which have been
appeared in [3] and shown to imply the 3GCC.

Theorem 2. The following are equivalent.
(a) (3GCC) Every 5-edge-connected graph is Z3-connected.
(b-i) Every 5-edge-connected graph is Z3-extendable at every 5-vertex.
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(b-ii) Every 5-edge-connected essentially 6-edge-connected graph is Z3-extendable at every 5-vertex.
(c) Every Z3-reduced graph has minimum degree at most 4.
(d) Every 4-edge-connected graph with at most five 4-cuts is Z3-connected.

In particular, Theorem 2, using equivalent statement (c), provides another alternative proof
(different from Theorem 1) of the fact that the validity of 3GCC implies 3FC. To see this, notice
that the minimal counterexample G of 3FC is 5-regular by Mader’s splitting lemma [10] (Lemma 3
below). Observe also that, if H is a Z3-connected subgraph of G, then a mod 3-orientation of G/H can
be easily extended to G (cf. [3,5,9,20]), and so the minimal counterexample G must be Z3-reduced.
Thus G is a 5-regular Z3-reduced graph, a contradiction to Theorem 2(c).

Restricted to planar graphs, applying the powerful flow extension techniques, a recent result
of Richter, Thomassen and Younger [11] shows 3GCC and its flow extension version(Theorem 2
(b-i)) hold for planar graphs. The techniques in proving Theorems 1 and 2 allow us to obtain more
equivalent statements of the Richter–Thomassen–Younger result, and to extend it to graphs with
crossing number one.

Theorem 3. Each of the following holds.
(i) [7,11] Every 5-edge-connected planar graph is Z3-connected.
(ii) [11] Every 5-edge-connected planar graph is Z3-extendable at every 5-vertex.
(iii) Every Z3-reduced planar graph has minimum degree at most 4.
(iv) Every 5-edge-connected graph with crossing number at most one is Z3-connected.

For general graphs, we summarize some previous approach on each of the above statements of
Theorem 2 from [3,9], and also provide new partial results for Theorem 2(d).

Theorem 4. Each of the following holds.
(a) [9] Every 6-edge-connected graph is Z3-connected.
(b-i) [9] Every 6-edge-connected graph is Z3-extendable at every vertex of degree at most 7.
(b-ii) [3] Every 5-edge-connected essentially 23-edge-connected graph is Z3-extendable at every
5-vertex.
(c) [3] Every Z3-reduced graph has minimum degree at most 5.
(d-i) Every 4-edge-connected graph with at most five 4-cuts and without 5-cuts is Z3-connected.
(d-ii) Every 5-edge-connected graph with at most seven 5-cuts is Z3-connected.

Note that Jaeger et al. [5] constructed a 4-edge-connected non-Z3-connected graph with fifteen
4-cuts and without 5-cuts. This indicates that Theorem 4(d-i) is almost tight.

In the next section, we first present some preliminaries, and then prove Theorems 1–3. The proof
of Theorem 4(d-i)(d-ii) will be completed in Section 3.

2. Flow extensions

2.1. Preliminaries

Before proceeding we introduce a few more notation. For a vertex subset A ⊂ V (G), we use
∂G(A) to denote the set of edges with one end in A and the other in Ac , where Ac

= V (G) \ A is the
complement of A. Let dG(A) = |∂G(A)| be the number of edges between A and Ac . When A = {x},
we shall use ∂G(x) for ∂G({x}) and dG(x) for dG({x}), respectively. Sometimes the subscripts may be
omitted for convenience if the graph G is understood from context.

In a graph G, a k-cut ∂(A) is called a k-critical-cut with respect to A if d(A) ≤ k and for any B ⊊ A,
d(B) > k; we also say that A is a k-critical-set. The following observation follows easily from the
definition.

Observation 1. Let G be a k-edge-connected graph with exactly q k-cuts. Denote A1, A2, . . . , At to be
all distinct k-critical-set A such that ∂(A) is a k-critical-cut. Then each of the following holds.
(i) Ai ∩ Aj = ∅ for any i ̸= j.
(ii) If q = 1, then t = 2 and A2 = V (G) \ A1.
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Fig. 1. The graph W and its orientations.

(iii) If q ≥ 2, then ∂(Ai) ̸= ∂(Aj) for any i ̸= j. Hence t ≤ q.
(iv) Construct a graph G′ from G by adding a new vertex x and connecting x and Ai with a new edge for
each i = 1, . . . , t. Then all the edge-cuts other than ∂G′ (x) in G′ have size at least k + 1.

Let G be a graph with a 5-vertex x ∈ V (G). In a mod 3-orientation D of G, the edges in ∂(x) at x
is oriented either as 4 ingoing and 1 outgoing, or as 1 ingoing and 4 outgoing. So we call such an
edge in ∂(x) a minor-edge at x if its orientation is different from other edges in ∂(x).

A major step of our arguments relies on the following property of flows on the graph W depicted
in Fig. 1. Formally, W denotes the graph with vertex set V (W ) = {v0, v1, . . . , v5} and edge multiset

E(W ) = {v5v1, v5v1}

4⋃
i=1

{vivi+1, vivi+1}

5⋃
i=1

{v0vi}.

Lemma 1. (i) For any mod 3-orientation D of W, there exists a vertex vk with 1 ≤ k ≤ 5 such that
v0vk is the minor-edge at vk.
(ii) Let β ∈ Z(W ,Z3) be a boundary function such that β(vi) = 1 in Z3 for each i = 0, 1, . . . , 5. Then
for any β-orientation D of W, there exists a vertex vj ∈ V (W ) such that d+

D (vj) = 0 and d−

D (vj) = 5.

Proof. (i) Suppose to the contrary that, in a mod 3-orientation D of G each edge v0vk is not the
minor-edge at vk for k = 1, 2, . . . , 5. We count the deficiency d+

D (v)−d−

D (v) at each vertex v ∈ V (W ).
By symmetry, we may assume that under orientation D the edges in ∂(v0) at vertex v0 are oriented
as 4 ingoing and 1 outgoing (with deficiency −3). As each v0vk is not the minor-edge at vk for
k = 1, 2, . . . , 5, it holds that four of {v1, v2, . . . , v5} are received orientations as 1 ingoing and
4 outgoing (with deficiency 3), and the other one is opposite as 4 ingoing and 1 outgoing (with
deficiency −3). So the deficiency at all the vertices are four 3’s and two −3’s. This is a contradiction
to the fact that

∑
v∈V (W )(d

+

D (v) − d−

D (v)) = 0.
(ii) The proof is similar to (i) by counting deficiency at each vertex. Let D be a β-orientation of
W . Then for each vertex v ∈ V (W ), d+

D (v) − d−

D (v) ≡ β(v) ≡ 1 (mod 3), and so the deficiency
d+

D (v) − d−

D (v) ∈ {1, −5}. Since
∑5

i=0(d
+

D (vi) − d−

D (vi)) = 0, there exists a vertex vj with 0 ≤ j ≤ 5
such that d+

D (v) − d−

D (v) = −5 as desired. □

We also need the following lemma about Z3-extendability in [3].

Lemma 2 ([3]). Let G be a graph with x ∈ V (G). Then G is Z3-extendable at x if and only if G − x is
Z3-connected.

For a graph G with uz, vz ∈ E(G), a splitting at z is an operation to delete edges uz, vz and add
a new edge uv. If z is an even vertex of G, a complete splitting at z is to apply splitting operations
on all the edges of ∂G(z) in pairs and then delete the isolated vertex z to obtain the resulting graph.
The following Mader’s splitting lemma shows that it is possible to preserve the edge connectivity
after splitting operations.
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Lemma 3 (Mader [10]). Let G be a k-edge-connected graph with a t-vertex z ∈ V (G). If t ≥ k+2, then
there exists a splitting at z such that the resulting graph is k-edge-connected. If t is even, then there
exists a complete splitting at z such that the resulting graph is k-edge-connected.

2.2. Proofs of Theorems 1–3

In this subsection, we present the proofs of Theorems 1–3 using a unified construction method
through properties given in Lemma 1.

An Alternative Proof of Theorem 1. Clearly, ‘‘(i)⇒(ii)’’ holds and a standard argument could show
that ‘‘(iii)⇒(i)’’. We provide a proof of ‘‘(iii)⇒(i)’’ here for completeness, which is similar to Kochol’s
proof in [6]. Specifically, let G be a counterexample of 3FC (statement (i)) with |E(G)| + |V (G)|
minimized. Then G is 5-regular by Lemma 3. And G must contain nontrivial 4-cuts; otherwise G
is 5-edge-connected, and so (i) follows by (iii). Among all nontrivial 4-cuts of G, we select a 4-cut
∂(A) with |A| as small as possible. Then |V (G)| − 1 > |A| ≥ 2 and we have

dG(A′) = |∂G(A′)| ≥ 5 for any A′ ⊊ A. (1)

Contract A to obtain a new graph G1 = G/A. Thus G1 is 4-edge-connected, and so admits a mod
3-orientation D1 by the minimality of G. Then we contract Ac to obtain another new graph G2 =

G/Ac , where Ac is contracted to become a new vertex x. Pre-orient the edges in ∂G2 (x) the same
as ∂D1 (A

c). Hence the edges in ∂G2 (x) are oriented as two ingoing and two outgoing. Obtain a new
graph G3 from G2 by replacing an ingoing edge at x with two outgoing edges. Hence x is a 5-vertex
now, and G3 is 5-edge-connected by (1). Moreover, the pre-orientation at x is still balanced mod 3.
By (iii), this pre-orientation can be extended to a mod 3-orientation D3 of G3. Then, after deleting
the edges of ∂G3 (x), the combination of D1 and the rest of D3 gives a mod 3-orientation of G. Hence
(iii) implies (i).

The major task remaining is to show that ‘‘(ii)⇒(iii)’’. The method below is principally different
from Kochol’s proof in [6]. We hope this new method may shed some light on attacking 3FC and
3GCC.

Assume that statement (ii) holds that every 5-edge-connected graph has a mod 3-orientation.
Suppose to the contrary that there is a 5-edge-connected graph G and a 5-vertex x ∈ V (G) with
pre-orientation Dx that is not M3-extendable to a mod 3-orientation of G. Recall that W denotes
the graph depicted in Fig. 1. We construct a new graph H by replacing each vertex of W with a
copy of G − x, where each edge v0vk (1 ≤ k ≤ 5) is corresponded to the minor-edge at x of Dx
in that copy. More precisely, denote ∂G(x) = {xx0, xx1, . . . , xx4}, where xx0 is the minor-edge in
pre-orientation Dx. (Notice that we allow xi = xj for i ̸= j, when ∂G(x) contains parallel edges.) The
construction of the new graph H is as follows. Attach six copies of G− x, say G0,G1, . . . ,G5, whose
vertices corresponding to x0, . . . , x5 are xi0, . . . , x

i
5 for i = 0, . . . , 5. First, replace the vertex v0 of

W with G0 by putting the end v0 of edge v0vi in the position of x0i−1 for each i = 0, . . . , 4. Then,
for each j = 1, . . . , 5, replace the vertex vj of W with Gj by putting the end vj of edge vjv0 in the
position of xj0, and putting the end vj of other edges in ∂W (vj) matching to xj1, x

j
2, x

j
3, x

j
4, respectively.

The constructed new graph H is depicted in Fig. 2.
It is routine to check that H is 5-edge-connected by the 5-edge-connectivity of W and copies

of G. Since statement (ii) holds, H admits a mod 3-orientation D. Contract all copies of G − x to
obtain a graph W and consider the orientation D restricted to W . By Lemma 1(i), there exists a
vertex vk of W , corresponding to the contraction of Gk (for some k ∈ {1, . . . , 5}), such that v0vk is
the minor-edge at vk. Now in H contract all the vertices in V (H) \ V (Gk) to become a new vertex x.
Then this results a copy of G, consisting of a vertex x and Gk

= G − x. The orientation D restricted
to it provides a mod 3-orientation Dk. Moreover, the edge xxk0 is a minor-edge at x under Dk. If Dk
agrees with Dx at x, then Dk is a mod 3-orientation extended from Dx, a contradiction. Otherwise,
we reverse the orientation of all edges from Dk to obtain another mod 3-orientation D∗

k . Now D∗

k
agrees with Dx at x since xxk0 is still the minor-edge at x under D∗

k . This is a contradiction again,
completing the proof of Theorem 1. ■
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Fig. 2. The constructed graph H and its orientation for proving Theorem 1.

Fig. 3. The constructed graph for proving Theorems 2 and 3(ii)(iii).

With a little more thought, one can observe that in proving Theorem 1, if the graph G is planar,
then the constructed graph H can be modified to planar as well, see similar construction in Fig. 3
below. (This is because the positions of x0, . . . , x4 can be shifted cyclically in a planar embedding.)
Thus we obtain the following corollary for planar graphs. It suggests that Grötzsch’s 3CT is exactly
equivalent to its restriction to girth 5 case, a fact maybe not known before.

Corollary 5. The following are equivalent versions of Grötzsch’s 3CT.
(a) Every triangle-free planar graph is 3-colorable.
(b) Every planar graph of girth 5 is 3-colorable.

By applying arguments dual to the proof above (using dual graph of W and dual constructions),
one may also show that Grötzsch’s 3CT is also equivalent to the statement that any pre-coloring
of a 5-cycle in a triangle-free planar graph can be extended to a 3-coloring of the entire graph, a
useful strengthening theorem proved by Thomassen [14].

Now we prove Theorem 2 using similar constructions, but employing Lemma 1(ii) instead. The
argument presented here is a slight modification of that in the author’s Ph.D dissertation [8].
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Proof of Theorem 2. The relations of some of those statements have been investigated in [3]. The
proofs of ‘‘(b-i)⇔(b-ii)’’ and ‘‘(b-ii)⇒(c)⇒(a)’’ have been presented in [3,8]. Clearly, we also have
‘‘(d)⇒(a)’’. We shall complete the proof of Theorem 2 by showing ‘‘(b-i)⇒(d)’’ and ‘‘(a)⇒(b-i)’’
below.

Proof of ‘‘(b-i)⇒(d)’’: Let G be a 4-edge-connected graph with at most five 4-edge-cuts. Denote
A1, A2, . . . , At to be all distinct 4-critical-sets A such that ∂(A) is a 4-critical-cut. Then t ≤ 5 by
Observation 1. The conclusion is clear if t = 0. We may assume 1 ≤ t ≤ 5. Construct a new graph
G′ from G by adding a new vertex z, connecting z and A1 with 6 − t new edges, and connecting
z and Ai with a new edge for each i = 2, . . . , t . Then dG′ (z) = 5 and G′ is 5-edge-connected by
Observation 1(iv). By the validity of Theorem 2(b-i), G′ is Z3-extendable at z. Then it follows from
Lemma 2 that G = G′

− z is Z3-connected. This proves ‘‘(b-i)⇒(d)’’.
Proof of ‘‘(a)⇒(b-i)’’: Suppose to the contrary that G is a 5-edge-connected graph which is not

Z3-extendable at a given 5-vertex z. By Lemma 2, G − z is not Z3-connected, and thus G − z has
no β1-orientation for some boundary function β1 of G− z. Denote ∂(z) = {zu1, zu2, . . . , zu5}. (Note
that ui, uj may represent the same vertex for distinct i and j when ∂(z) contains parallel edges.)
We orient the edge zui from z to ui for each i = 1, . . . , 5 to obtain a pre-orientation Dz . Let β be
a boundary function of G such that β(z) = 2 and β(x) = β1(x) − α(x) in Z3 for any x ∈ V (G) \ {z},
where α(x) is the number of directed edges from z to x. (In particular, β(x) = β1(x) in Z3 for any
x ∈ V (G) − ∪

5
i=1{ui} ∪ {z}.) Clearly, β ∈ Z(G,Z3) and

Dz cannot be extended to a β-orientation of G. (2)

Now, we replace each vertex of the graph W (see Fig. 1) with a copy of G − z, where each ui is
connected with an edge of W (see Fig. 3). Let H be the resulting graph. Define a boundary function
β∗ of H such that β∗ is consistent with β in each copy of G − z. Note that β∗ is indeed a boundary
function of H as

∑
v∈V (H) β

∗(v) = 6
∑

v∈V (G−z0)
β(v) ≡ 0 (mod 3). Since H is 5-edge-connected, we

have a β∗-orientation D∗ of H by the validity of Theorem 2(a). Under the orientation D∗, we consider
the oriented graph W obtained from H by contracting all the copies of G− z. By Lemma 1(ii), there
exists a vertex with indegree 5. We uncontract this vertex and denote its corresponding vertex set
of H by U . Then H/U c is isomorphic to G, where the contracted vertex y plays the same role as
z. Furthermore, the orientation D∗ restricted to H/U c gives a β-orientation of H/U c since all the
edges incident with y are directed out of y. This contradicts to (2) that Dz cannot be extended to a
β-orientation of G. The proof is completed. ■

Now we prove Theorem 3 using similar arguments as in the proof of Theorem 2.

Proof of Theorem 3. The proof of ‘‘(i)⇒(ii)’’ is the same as the proof of Theorem 2 ‘‘(a)⇒(b-i)’’
above. Notice that when G is planar, the new constructed graph H from W and copies of G − x is
also planar, and hence ‘‘(i)⇒(ii)’’ holds. The proof of ‘‘(ii)⇒(iii)’’ is also straightforward by employing
Lemma 2, similar as proving Theorem 2 ‘‘(b-ii)⇒(c)’’ in [3]. If there exists a Z3-reduced graph with
minimal degree at least 5, we choose a vertex set S such that ∂(S) is a 4-critical-set. Then |S| ≥ 2, and
contract Sc to obtain a graph G1 = G/Sc , where x is the vertex set Sc contracted into. Add 5−|∂G(S)|
edge between x and S in G1 to result a new planar graph G2. Hence G2 is 5-edge-connected. By (ii), G2
is Z3-extendable at x, which shows that G[S] = G2 −x is Z3-connected by Lemma 2, a contradiction
to the fact that G is Z3-reduced.

Now we prove ‘‘(ii)⇒(iv)’’ with similar arguments. Let G be a 5-edge-connected graph embedded
on the plane such that the only crossing is between x1x2 and y1y2. We delete edges x1x2, y1y2
and add a new vertex z with edges zx1, zx2, zy1, zy2, zy2. Let G′ be the resulting graph. Then G′

is a 5-edge-connected planar graph with a 5-vertex z. By (ii), G′ is Z3-extendable at z, and hence
G′

− z = G − x1x2 − y1y2 is Z3-connected by Lemma 2. Thus G is Z3-connected. This completes the
proof of Theorem 3. ■

One may wonder whether the proof of Theorem 3 extends to the ‘‘doublecross graphs’’, graphs
can be drawn in the plane with two crossings incident with the infinite region. We are unable to
reduce it to planar case as in Theorem 3. Similar phenomenon happens for Four Color Theorem(4CT)
of planar graphs. Jaeger [4] proved that every bridgeless cubic graph with at most one crossing
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has a nowhere-zero 4-flow (equivalently, is 3-edge-colorable), which is reduced to the planar
case, an equivalent version of 4CT, that every bridgeless cubic planar graph has a nowhere-zero
4-flow. However, for doublecross cubic graphs, Edwards, Sanders, Seymour and Thomas [2] em-
ployed the whole arguments of 4CT proofs (and many more works) to accomplish their proof that
every bridgeless doublecross cubic graph has a nowhere-zero 4-flow.

3. Graphs with Few Small Critical-cuts

We prove Theorem 4(d-i)(d-ii) in this section. Evidently, Theorem 4(d-ii) is easily derived by
Theorem 4(b-i) and Observation 1. However, Theorem 4(d-i) seems not to be deduced from the
current version of Theorem 4(b-i). We shall apply the full version of the flow extension theorem of
Lovász et al. [9].

Let G be a graph and β a boundary function. For a vertex set A ⊂ V (G), denote its boundary
β(A) ≡

∑
x∈A β(x) (mod 3). Define an integer valued mapping τ : 2V (G)

↦→ {0, ±1, ±2, ±3} such
that, for each vertex set A ⊂ V (G), τ (A) ≡ d(A) (mod 2) and τ (A) ≡ β(A) (mod 3).

Theorem 6 (Lovász et al. [9]). Let G be a graph, β ∈ Z(G,Z3) and z ∈ V (G). Let Dz be a pre-orientation
of ∂G(z). Assume that
(i) |V (G)| ≥ 3,
(ii) d(z) ≤ 4 + |τ (z)| and d+

Dz
(z) − d−

Dz
(z) ≡ β(z) (mod 3), and

(iii) d(A) ≥ 4 + |τ (A)| for each nonempty A ⊆ V (G) − {z0} with |V (G) − A| ≥ 2.
Then Dz can be extended to a β-orientation of the entire graph G.

Now we are ready to prove Theorem 4(d-i)(d-ii) using Theorem 6.

Proof of Theorem 4. Proof of (d-i): Let G be a 4-edge-connected graph with at most five 4-cuts
and without 5-cuts. Let β ∈ Z(G,Z3) be a boundary function of G. We are going to show that
G has a β-orientation. Similar to the previous section, we denote A1, A2, . . . , At to be all distinct
4-critical-sets of G. Note that t ≤ 5 by Observation 1. Construct a new graph G′ from G by adding
a new vertex z, and for each i = 1, . . . , t , adding a new edge between z and Ai, say zvi (where
vi ∈ Ai). We pre-orient the edges in ∂G′ (z) and modify the boundary appropriately to become a
new boundary β ′ of G′ such that dG′ (Ai) = 4 + |τ ′(Ai)| for each i = 1, . . . , t , where τ ′ denotes the
τ -function corresponding to boundary β ′ in G′. Specifically, we orient the edge zvi from z to vi if
τ (Ai) = 0 or 2, and orient zvi from vi to z otherwise(i.e. τ (Ai) = −2). Define the boundary β ′ of
G′ as follows. For any x ∈ V (G′) \ {v1, . . . , vt}, define β ′(x) = β(x); for each i = 1, . . . , t , define
β ′(vi) = β(vi)+ 1 if zvi is oriented from vi to z, and β ′(vi) = β(vi)− 1 otherwise. Now, it is easy to
see that dG′ (Ai) = 4+|τ ′(Ai)| for each i = 1, . . . , t , and that Theorem 6 is applied for G′ by checking
conditions (i)(ii)(iii). That is, we have dG′ (z) ≤ 4 + |τ ′(z)| since dG′ (z) ≤ 5 and by parity, and this
verifies condition (ii) of Theorem 6. Let A be a nonempty subset of V (G′)−{z} with |V (G′) − A| ≥ 2.
If dG′ (A) ≥ 6, then we have dG′ (A) ≥ 4+|τ ′(A)| by parity. Otherwise, we have A = Ai for some i, and
so dG′ (A) = 4+ |τ ′(A)|. Hence condition (iii) of Theorem 6 holds. By Theorem 6, the pre-orientation
can be extended to a β ′-orientation D′ of G′. Notice that D′ restricted to G provides a β-orientation
of G. This proves (d-i).

Proof of (d-ii): The proof of (d-ii) is analogous to the proof of Theorem 2 ‘‘(b-i)⇒(d)’’. We add
a new vertex z to connect each 5-critical-set to obtain a new graph G′ such that dG′ (z) = 7. Then
G = G′

− z is Z3-connected by Theorem 4(b-i) and Lemma 2. This completes the proof. ■

Note that, by Observation 1 the proof above is still valid for graphs with many 5-cuts but only
at most seven 5-critical-cuts, with essentially the same proof.

Corollary 7. Every 5-edge-connected graph with at most seven 5-critical-cuts is Z3-connected.
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