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a b s t r a c t

A star edge coloring of a graph is a proper edge coloring such that every connected
2-colored subgraph is a path with at most 3 edges. Deng et al. and Bezegová et al.
independently show that the star chromatic index of a tree with maximum degree ∆

is at most ⌊
3∆
2 ⌋, which is tight. In this paper, we study the list star edge coloring of

k-degenerate graphs. Let ch′
st (G) be the list star chromatic index of G: the minimum s

such that for every s-list assignment L for the edges, G has a star edge coloring from L.
By introducing a stronger coloring, we show with a very concise proof that the upper
bound on the star chromatic index of trees also holds for list star chromatic index of
trees, i.e. ch′

st (T ) ≤ ⌊
3∆
2 ⌋ for any tree T with maximum degree ∆. And then by applying

some orientation technique we present two upper bounds for list star chromatic index
of k-degenerate graphs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. A star coloring of a graph is a proper vertex coloring such that the union of
any two color classes induces a star forest. This notion was first introduced by Grünbaum [5] in 1973 and did not attract
more attention until 2001 in the paper by Fertin, Raspaud and Reed [4]. Just like relation between concepts of traditional
edge and vertex colorings, a star coloring of a line graph is a star edge coloring of the original graph.

A star edge coloring of a graph G is a proper edge coloring such that every connected bicolored subgraph is a path
of length at most 3 (the length of a path is the number of edges). The notion of the star edge coloring is intermediate
between acyclic edge coloring, when every bicolored subgraph is acyclic, and strong edge coloring when every bicolored
connected subgraph has at most two edges.

The star chromatic index of G, denoted by χ ′
st (G), is the smallest integer k such that G is star k-edge-colorable. Liu and

Deng [11] showed that χ ′
st (G) ≤ ⌈16(∆ − 1)

3
2 ⌉ when ∆ ≥ 7. Dvořák, Mohar, and Šámal [3] presented a near-linear upper

bound for χ ′
st (G).

Theorem 1.1 ([3]). For any graph G with maximum degree ∆, χ ′
st (G) ≤ ∆ · 2O(1)

√
log∆.

Bezegová et al. [1] and Deng et al. [2] independently proved the following bound for trees.
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Theorem 1.2 ([1,2]). Let T be a tree with maximum degree ∆. Then

χ ′

st (T ) ≤

⌊
3∆
2

⌋
,

and the bound is tight.

It seems very difficult to determine the star chromatic index of graphs even for complete graphs and subcubic graphs.
Lei, Shi, and Song [9] showed that it is NP-complete to determine whether a subcubic multigraph is star 3-edge-colorable.
Dvořák, Mohar, and Šámal [3] presented the following upper and lower bounds for complete graphs:

2n(1 + o(1)) ≤ χ ′

st (Kn) ≤ n
22

√
2(1+o(1))

√
log n

(log n)
1
4

.

Dvořák, Mohar, and Šámal [3] also studied star edge coloring of subcubic graphs and proved the following.

Theorem 1.3 ([3]). If G is a subcubic graph, then χ ′
st (G) ≤ 7.

They made the following conjecture.

Conjecture 1.4 ([3]). If G is a subcubic graph, then χ ′
st (G) ≤ 6.

A natural generalization of star edge coloring is the list star edge coloring and it was pointed out in [3]: It would be
interesting to understand the list version of star edge coloring.

For a given list assignment L which assigns to each edge e a finite set L(e), a graph is said to be L-star-edge-colorable
if G has a star edge coloring c such that c(e) ∈ L(e) for each edge e. L is called an edge k-list if each L(e) is a set of size
at least k. A graph G is star k-edge-choosable if for any edge k-list L there is a star edge coloring c such that c(e) ∈ L(e)
for every edge e. The list star chromatic index of a graph G, denoted by ch′

st (G), is the minimum k such that G is star
k-edge-choosable.

Dvořák, Mohar, and Šámal proposed the following problem in [3] for the list star edge coloring.

Problem 1.5 ([3]). Is it true that ch′
st (G) ≤ 7 for every subcubic graph G? (Perhaps even ≤ 6).

Problem 1.6 ([3]). Is it true that ch′
st (G) = χ ′

st (G) for every graph G?

In an attempt to solve Problem 1.5, Kerdjoudj et al. [6] proved the following results on list version for subcubic
graphs with certain maximum average degree conditions. The maximum average degree of a graph G is defined by
mad(G) = max{ 2|E(H)|

|V (H)| : H ⊆ G}.

Theorem 1.7 ([6]). Let G be a subcubic graph. Then each of the following holds.
(i) ch′

st (G) ≤ 8.
(ii) If mad(G) < 7

3 , then ch′
st (G) ≤ 5.

(iii) If mad(G) < 5
2 , then ch′

st (G) ≤ 6.

In this paper, we attempt to study the list star edge coloring of general graphs and present a couple of upper bounds
on the list star chromatic index in terms of degeneracy. After this paper was submitted, there are quite a few papers on
this topic are published (c.f.[7,8,10,13]). Also, Problem 1.5 was solved by Lužar, Mockovčiaková and R. Soták [12].

By introducing the notion of a slightly stronger edge coloring (than star edge coloring) we first give a concise proof for
the list star chromatic index of trees, and thus extend Theorem 1.2 to the list star chromatic index. Then by modifying
the ideas of the proof for trees and introducing some orientation technique, we present some upper bounds on list star
chromatic index of k-degenerate graphs for general k ≥ 2 (Theorems 1.8 and 1.9). Besides the orientation technique, our
main coloring strategy is to find a partition of each E(v) into two parts such that the colors used by the edges in one part
can be repeated by some edges with distance two from them. This will help reduce the number of forbidden colors. We
believe that our method will be useful in the future study of star edge coloring.

Theorem 1.8. For every tree T with maximum degree ∆,

ch′

st (T ) ≤

⌊
3∆
2

⌋
,

and this bound is tight.

Theorem 1.9. Let k ≥ 2 be an integer. For every k-degenerate graph G with maximum degree ∆, we have the following two
upper bounds:
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Fig. 1. An example on definition of distance.

Fig. 2. A 1
2 -strong 9 edge coloring: c(x1x), c(x2x), c(x3x) /∈ c(y) and c(y1y), c(y2y) /∈ c(x).

(a) ch′
st (G) ≤

5k−1
2 ∆ −

k(k+3)
2 . The bound is tight for C5 as ch′

st (C5) = 4.
(b) ch′

st (G) ≤ 2k∆ + k2 − 4k + 2.

Remark 1. By comparing those two bounds, it is easy to see that (a) is better than (b) if and only if k ≤
∆
3 .

Remark 2. Theorem 1.8 implies that if χ ′
st (T ) = ⌊

3∆
2 ⌋, then χ ′

st (T ) = ch′
st (T ). In particular, it is proved in [1] and [2] that if

T is a tree which has a ∆-vertex whose neighbors are all ∆-vertices, then χ ′
st (T ) = ⌊

3∆
2 ⌋ and thus χ ′

st (T ) = ch′
st (T ) = ⌊

3∆
2 ⌋

by Theorem 1.8. This responds to Problem 1.6 for some trees.

Before proceeding we need to introduce some notation. A graph is k-degenerate if every subgraph has minimum degree
at most k. A connected graph is 1-degenerate if and only if it is a tree. We use V (G) and E(G) to denote the vertex set
and edge set in a graph G, respectively. For each integer k ≥ 1, let [k] = {1, 2 · · · , k} and denote Vk(G), V≤k(G), V≥k+1(G)
the set of vertices with degree k, at most k, at least k + 1 in G respectively. Denote EG(u) the set of edges incident with
the vertex u in G and dG(u) = |EG(u)| the degree of u in G. Let D be an orientation of G. For each vertex v ∈ V (G), denote
E+

D (v) (E−

D (v), respectively) to be the edges oriented out from (into, respectively) the vertex v, and let d−(v) = |E−

D (v)|
and d+(v) = |E+

D (v)|.

2. Star edge coloring and 1
2 -strong edge coloring

We first apply our coloring strategy on trees, and then we generalize it to arbitrary graphs.

2.1. List star edge coloring and list 1
2 -strong edge coloring on trees

In this subsection we will prove Theorem 1.8.
Let G be a planar graph embedded on the plane. For each pair of adjacent edges u1v, u2v ∈ E(v), define the distance

from u1v to u2v at v to be

ρv(u1v, u2v) = 1 + |{uv ∈ E(v) : u1v, uv, u2v are located in the clockwise order}|.

It is obvious that ρv(u1v, u2v) + ρv(u2v, u1v) = dG(v).

Example: In Fig. 1, ρv(u1v, u2v) = 1, ρv(u2v, u1v) = 5, ρv(u3v, u5v) = 2, ρv(u6v, u3v) = 3.
For an edge coloring c and each vertex x, denote c(x) = {c(xu) : xu ∈ E(G)}.

Definition 2.1. Let G be a plane graph and 0 ≤ r ≤ 1 be a rational number. An r-strong edge coloring of G is an edge
coloring c : E(G) ↦→ [k] such that

(i) c(e1) ̸= c(e2) for any two adjacent edges e1, e2;
(ii) for any edge xy ∈ E(G), if ρx(vx, yx) ≤ rdG(x), then c(vx) /∈ c(y); if ρy(uy, xy) ≤ rdG(y), then c(uy) /∈ c(x).
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A 0-strong edge coloring is a proper edge coloring, and a 1-strong edge coloring is a strong edge coloring. In this paper,
we focus on 1

2 -strong edge coloring of graphs. We first show that a 1
2 -strong edge coloring is always a star edge coloring

and then show that every tree T with maximum degree ∆ has a list 1
2 -strong edge coloring as long as |L(e)| ≥ ⌊

3∆
2 ⌋ for

each edge e. An example of 1/2-strong edge coloring can be seen in Fig. 2.

Lemma 2.2. Let G be a plane graph and c be a proper edge coloring of G. If c is a 1
2 -strong edge coloring, then c is a star

edge coloring of G.

Proof. Suppose to the contrary that c is not a star edge coloring. Let P = xyzuv be a bicolored path (or cycle) where
c(xy) = c(zu) and c(yz) = c(uv). By the definition of 1

2 -strong edge coloring, we have c(tz) ̸= c(xy) for any tz ∈ E(z)
with ρz(tz, yz) ≤

1
2dG(z). Thus ρz(uz, yz) ≥ ⌊

dG(z)
2 ⌋ + 1 since c(uz) = c(xy) ∈ c(y). For the same reason, we have

ρz(yz, uz) ≥ ⌊
dG(z)
2 ⌋ + 1. This implies

dG(z) = ρz(yz, uz) + ρz(uz, yz) ≥

⌊
dG(z)
2

⌋
+ 1 +

⌊
dG(z)
2

⌋
+ 1 ≥ dG(z) + 1,

a contradiction. ■

Now we are ready to prove our result on trees (Theorem 1.8). By Lemma 2.2, Theorem 1.8 follows directly from the
theorem below.

Theorem 2.3. Let T be a tree with maximum degree ∆ embedded on the plane and L be a ⌊
3∆
2 ⌋-list assignment. Then there

exists a 1
2 -strong edge coloring c such that c(e) ∈ L(e) for every e ∈ E(G).

Proof. We prove the theorem by induction on |V (T )|. The theorem is obvious if |V (T )| = 2. We assume |V (T )| ≥ 3. Let
x be a vertex in T such that x is adjacent to at least dT (x) − 1 leaves. Denote t = dT (x) − 1 and let x1x, . . . , xtx, yx be the
edges in ET (x) in counterclockwise order where x1, x2, . . . , xt are leaves. Let T ′

= T −{x1, . . . , xt}. By induction hypothesis,
T ′ has a 1

2 -strong edge coloring c ′ such that c ′(e) ∈ L(e) for every e ∈ E(T ′). We shall extend c ′ to be a 1
2 -strong edge

coloring c of T .
Denote s = ⌊

dT (x)
2 ⌋. For every 1 ≤ i ≤ s, we have

|L(xix) \ c ′(y)| ≥

⌊
3∆
2

⌋
− ∆ ≥ s.

Thus we can first color the edges x1x, . . . , xsx properly by coloring each xix with a color from L(xix) \ c ′(y) for every
1 ≤ i ≤ s.

Denote l = ⌊
dT (y)
2 ⌋. Let y1, . . . , yl be all the neighbors of y with ρy(yjy, xy) ≤ l (j ∈ [l]) and denote L0 = {c(xix) : i ∈

[s]} ∪ {c(yjy) : j ∈ [l]} ∪ {c(xy)}. By the definition of 1
2 -strong edge coloring, L0 is the set of all forbidden colors for xxj for

each s + 1 ≤ j ≤ t .
Then for each s + 1 ≤ j ≤ t , we have

|L(xxj) \ L0| ≥

⌊
3∆
2

⌋
−

⌊
∆

2

⌋
− 1 −

⌊
∆

2

⌋
= ∆ − 1 −

⌊
∆

2

⌋
≥ t − s.

Thus we can color the edges xs+1x, xs+2x, . . . , xtx properly by coloring xjx with a color from L(xxj) \ L0 for each
s + 1 ≤ j ≤ t .

Finally, we show this coloring is a 1
2 -strong edge coloring of T . It suffices to verify the edge xy satisfying condition

(ii) of Definition 2.1. Let v ∈ {x1, . . . , xs} and u ∈ {y1, . . . , yl}. If ρx(vx, xy) ≤ ⌊
1
2dT (x)⌋ = s, we have c(vx) /∈ c(y); and if

ρy(uy, xy) ≤ ⌊
1
2dT (y)⌋ = l, we have c(uy) /∈ c(x). Therefore, the resulting coloring c is a 1

2 -strong edge coloring of T . The
proof is completed. ■

2.2. A generalization of 1
2 -strong edge coloring

Note that in the definition of 1
2 -strong edge coloring of a plane graph G, we only use the clockwise order of E(v) for

each vertex v, but not any other planarity structures. So the idea of 1
2 -strong edge coloring can be generalized to arbitrary

graphs as long as we have a cyclic ordering of edges in E(v) for each vertex v.

Definition 2.4. Let G be a graph and let σ (v) be a cyclic ordering of the edges in E(v) for each vertex v. σ is called a
local ordering of E(G). The distance from edge uv to wv at v with respect to σ , denoted by ρσ ,v(uv, wv), is their distance
in σ (v).
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One may consider σ (v) as a directed cycle with vertex set E(v) and the distance from uv to wv is the length of the
directed path from uv to wv in the directed cycle. Thus ρσ ,v(uv, wv) + ρσ ,v(wv, uv) = d(v). Denote

Fσ ,v(uv) = {wv ∈ E(v) : ρσ ,v(uv, wv) ≤

⌊
d(v)
2

⌋
}.

Let G be a graph and σ be a local ordering of E(G). A proper edge coloring c is a 1
2 -strong edge coloring with respect

to σ provided that for each edge uv ∈ E(G), c(uv) /∈ c(w) if wv ∈ Fσ ,v(uv) (or equivalently ρσ ,v(uv, wv) ≤ ⌊
d(v)
2 ⌋).

For convenience, the local ordering σ will be mentioned explicitly only when needed. If σ is understood from the
context, we simply use ρv(uv, wv) and Fv(uv) to denote ρσ ,v(uv, wv) and Fσ ,v(uv), respectively. Note |Fv(uv)| = ⌊

d(v)
2 ⌋.

Similar to Lemma 2.2, a 1
2 -strong edge coloring c of G with respect to σ is a star edge coloring.

Lemma 2.5. Let G be a graph. For any local ordering, every 1
2 -strong edge coloring of G is a star edge coloring.

Proof. Suppose to the contrary that P = xyzuv is a bicolored path (or cycle) of length four in a 1
2 -strong edge coloring c

of G. Since c(yz) ∈ c(u), we have ρz(yz, uz) > ⌊
d(z)
2 ⌋. Since c(zu) ∈ c(y), ρz(uz, yz) > ⌊

d(z)
2 ⌋. Thus ρz(uz, yz) + ρz(yz, uz) ≥

2(⌊ d(z)
2 ⌋ + 1) > d(z), a contradiction to the fact that ρz(uz, yz) + ρz(yz, uz) = dG(z). ■

We show a general upper bound on the list 1
2 -strong edge coloring of graphs, which will be needed in the proof of

Theorem 1.9-(b) when k ∈ {∆, ∆ − 1, ∆ − 2}.
For two positive integers ∆ and k, denote

ℓ =

⎧⎪⎪⎨⎪⎪⎩
3
4∆

2
+ (k − 1)∆, if k ≤ ⌊

∆
2 ⌋ and ∆ is even;

3
4∆

2
+

2k−3
2 ∆ +

3
4 , if k ≤ ⌊

∆
2 ⌋ and ∆ is odd;

∆2
+

k−4
2 ∆ + 2k − 1, if k ≥ ⌊

∆
2 ⌋ + 1 and ∆ is even;

∆2
+

k−5
2 ∆ +

3k+3
2 , if k ≥ ⌊

∆
2 ⌋ + 1 and ∆ is odd.

Theorem 2.6. Let G be a k-degenerate graph with maximum degree ∆ ≥ 3. Then, for any local ordering and for any ℓ-list
assignment L, there exists a 1

2 -strong edge coloring c such that c(e) ∈ L(e) for every e ∈ E(G).

Proof. Let σ be a local ordering of E(G). Let G be a counterexample with |E(G − V1)| minimized. By Theorem 1.2,
G is not a tree and G − V1 is connected. Let v be a vertex such that dG−V1 (v) is the minimum in G − V1. Denote
EG(v) = {x1v, . . . , xtv, y1v, . . . , ysv}, where dG(xi) ≥ 2 and dG(yj) = 1 for each 1 ≤ i ≤ t and each 1 ≤ j ≤ s. Construct a
new graph G′ from G − v by adding new degree one vertex x′

i connecting xi for each 1 ≤ i ≤ t where the edge x′

ixi plays
the same role as vxi in the ordering σ (xi). Since v is adjacent to at least one vertex of degree large than one in G, we have
|E(G′

− V1(G′))| < |E(G − V1)|. By the minimality of G, there exists a 1
2 -strong edge coloring c ′ such that c ′(e) ∈ L(e) for

every e ∈ E(G′). Uncolor the edges x′

ixi’s and we still use c ′ to denote the new coloring. Then the coloring c ′ restricted to
G − v is a partial 1

2 -strong edge coloring of G, and we shall extend c ′ to a 1
2 -strong edge coloring c of G by coloring the

edges in E(v) appropriately.
We color the edges xiv in {x1v, x2v, . . . , xtv} with |Fv(xiv) ∩ {x1v, x2v, . . . , xtv}| = ⌊

∆
2 ⌋ first, and then color the

remaining edges in {x1v, x2v, . . . , xtv}, and finally we color the edges y1v, . . . , ysv.
In the following, we estimate the maximum number of forbidden colors in order to color the edges in E(v). Let uv ∈ E(v)

where u ∈ {x1, . . . , xt}. Suppose we pick a color α to color uv.
We first consider the forbidden colors on u’s side. By the definition of 1

2 -strong edge coloring, we have
(i) for each edge uw ∈ Fu(vu), α /∈ c ′(w). Since |c ′(w)| = dG(w) ≤ ∆ and there are |Fu(vu)| such edges, the total number

of forbidden colors from those edges is at most |Fu(vu)|∆ = ⌊
d(u)
2 ⌋∆;

(ii) for each edge zu ̸∈ Fu(vu) and for any z ′z ∈ E(G) with uz ∈ Fz(z ′z), c ′(z ′z) does not appear in c ′(u). Since
c ′(z ′z) ̸∈ c ′(u), we have α ̸= c ′(z ′z) and thus including c ′(zu), there are at most ⌊

∆
2 ⌋+ 1 forbidden colors in c ′(z). Since uv

is not colored yet, there are (d(u) − 1 − ⌊
d(u)
2 ⌋) such edges zu. Therefore the total number of forbidden colors from those

edges is at most (d(u) − 1 − ⌊
d(u)
2 ⌋)(⌊∆

2 ⌋ + 1).
So the number of forbidden colors on u’s side is at most⌊

d(u)
2

⌋
∆ + (d(u) − 1 −

⌊
d(u)
2

⌋
)(
⌊

∆

2

⌋
+ 1) ≤

⌊
∆

2

⌋
∆ + (∆ − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1). (1)

Now we consider the forbidden colors on v’s side. Note that y1v, . . . , ysv are not colored yet. It is clear that the number
of forbidden colors on v’s side is at most

(t − 1)∆ ≤ (k − 1)∆. (2)

However we can have better estimation when t ≥ ⌊
∆
2 ⌋ + 1.
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Denote A = Fv(uv)∩ {x1v, x2v, . . . , xtv} and a = |A|. Let h be the number of colored edges in Fv(uv), and let u′v be the
colored edge in A with ρv(uv, u′v) maximized.

Similar to (i) and (ii) we have the following:
(iii) For each edge wv ∈ A, α /∈ c ′(w) and thus there are dG(w) ≤ ∆ or dG(w) − 1 ≤ ∆ − 1(depending on whether wv

is already colored or not) forbidden colors at w.
(iv) For each edge wv ∈ {x1v, x2v, . . . , xtv} − Fv(uv), similar to (ii) there are at most ⌊

∆
2 ⌋ + 1 forbidden colors. Note

there are at most (t − 1 − a) such edges.
If a = |A| ≤ ⌊

∆
2 ⌋ − 1, by (iii) and (iv) the total number of forbidden colors caused by v’s side is at most

a∆ + (t − 1 − a)(
⌊

∆

2

⌋
+ 1)

≤ (
⌊

∆

2

⌋
− 1)∆ + (t −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1)

≤

⌊
∆

2

⌋
(∆ −

⌊
∆

2

⌋
− 1) − ∆ + k(

⌊
∆

2

⌋
+ 1)

≤

⌊
∆

2

⌋
(∆ −

⌊
∆

2

⌋
− 2) + k(

⌊
∆

2

⌋
+ 2) − ∆ − 1 (by ⌊

∆
2 ⌋ + 1 ≤ k)

≤

⌊
∆

2

⌋
(∆ −

⌊
∆

2

⌋
− 4) + k(

⌊
∆

2

⌋
+ 2) − 1 (by 2⌊∆

2 ⌋ ≤ ∆).

Now assume |A| = ⌊
∆
2 ⌋. Then Fv(uv) ⊆ {x1v, x2v, . . . , xtv} and ⌊

dG(v)
2 ⌋ = ⌊

∆
2 ⌋. Since u′v is already colored, by the

coloring algorithm, |Fv(u′v) ∩ {x1v, x2v, . . . , xtv}| = |A| = ⌊
∆
2 ⌋. Thus Fv(u′v) ⊆ {x1v, x2v, . . . , xtv} and |Fv(u′v)| = ⌊

∆
2 ⌋.

Note that h ≤ ρv(uv, u′v). Since the colored edges in Fv(uv) do not belong to Fv(u′v) if h ̸= 0, we have h + ⌊
∆
2 ⌋ ≤

ρv(uv, u′v) + |Fv(u′v)| ≤ t . Thus

h ≤ t −

⌊
∆

2

⌋
. (3)

By (iii) and (iv), the total number of forbidden colors on v’s side is at most

h∆ + (
⌊

∆

2

⌋
− h)(∆ − 1) + (t − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1)

=

⌊
∆

2

⌋
(∆ − 1) + h + (t − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1)

≤

⌊
∆

2

⌋
(∆ − 1) + t −

⌊
∆

2

⌋
+ (t − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1) (by Inequality (3))

=

⌊
∆

2

⌋
(∆ − 2) + t(

⌊
∆

2

⌋
+ 2) − (1 +

⌊
∆

2

⌋
)2

≤

⌊
∆

2

⌋
(∆ − 2) + k(

⌊
∆

2

⌋
+ 2) − (1 +

⌊
∆

2

⌋
)2 (by t ≤ k)

=

⌊
∆

2

⌋
(∆ −

⌊
∆

2

⌋
− 4) + k(

⌊
∆

2

⌋
+ 2) − 1.

Therefore, if k ≥ ⌊
∆
2 ⌋ + 1, then by Inequality (1) the total number of forbidden colors for uv is at most⌊

∆

2

⌋
∆ + (∆ − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1) +

⌊
∆

2

⌋
(∆ −

⌊
∆

2

⌋
− 4) + k(

⌊
∆

2

⌋
+ 2) − 1 ≤ ℓ − 1.

If k ≤ ⌊
∆
2 ⌋, then by Inequalities (1) and (2) the total number of forbidden colors for uv is at most⌊
∆

2

⌋
∆ + (∆ − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1) + (k − 1)∆ ≤ ℓ − 1.

Finally, when we color yjv (j ∈ [s]), the total number of forbidden colors is at most⌊
∆

2

⌋
∆ + (∆ − 1 −

⌊
∆

2

⌋
)(
⌊

∆

2

⌋
+ 1) ≤ ℓ − 1.

Therefore, we can complete the coloring process to obtain a 1
2 -strong edge coloring c of G, a contradiction. This

completes the proof of the theorem. ■
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Fig. 3. Local structure of E(vi).

Note that Theorem 2.6 also provides a general upper bound 3
2∆

2
− 1 (and 3

2∆
2
− ∆ +

3
2 when ∆ is odd) for 1

2 -strong
edge coloring of graphs with maximum degree ∆.

3. List star edge coloring of k-degenerate graphs—two more upper bounds

In this section, we modify the idea of the proof of trees by introducing a special orientation of a graph G to handle star
edge coloring and present two more upper bounds.

Definition 3.1. Let G be a graph on n vertices with maximum degree ∆, and p, q ≤ ∆ be two positive integers. A
well-ordered (p, q)-star orientation (V,D) of G is a vertex enumeration V = (v1, v2, . . . , vn) together with the orientation
D such that, for each i ∈ [n],

(a) d+

D (vi) = |E+

D (vi)| ≤ p;
(b) for any uvi ∈ E−

D (vi), |EGi (u)| ≤ q, where Gi is the subgraph of G induced by ∪
i
j=1E

−

D (vj).

We also need to modify the definition of local ordering of G (see Definition 2.4) for digraphs.

Definition 3.2. Let G be a graph and D be an orientation of G. Let σ (v) be a cyclic ordering of the edges in E−

D (v) for
each vertex v. σ is called a local ordering of D. The distance from edge uv to wv at v with respect to σ , denoted by
ρσ ,v(uv, wv), is their distance in σ (v).

Theorem 3.3. Let G be a graph with maximum degree ∆ and let p, q ≤ ∆ be two positive integers. Assume that G has a
well-ordered (p, q)-star orientation (V,D). Then

ch′

st (G) ≤

{ 3q+2p−1
2 ∆ −

p(q+1)
2 , if ∆ ≤ p + 2;

3q+2p−1
2 ∆ −

p(q+3)
2 , if ∆ ≥ p + 3.

Proof. Let σ be a local ordering of D. We will define a coloring of G recursively by coloring G1,G2 until Gn such that the
coloring of Gi is indeed a star edge coloring of Gi for each i ∈ [n]. For a given edge uv ∈ E−

D (v), denote

Fv(uv) = {wv ∈ E−

D (v) : ρv(uv, wv) ≤

⌊
d−

D (v)
2

⌋
} and gv(uv) = wv where ρv(uv, wv) = 1.

First, we color G1 with a proper edge coloring. Note that E(G1) induces a star (possible empty).
Now we assume that Gi−1 is already colored with an edge coloring c. We are to extend the coloring c to the edges

in E−

D (vi) to obtain a star edge coloring of Gi. Denote σ (vi) = {u1vi, u2vi, . . . , ud−

D (vi)
vi}. Suppose that all the edges

u1vi, . . . uj−1vi are colored and we are to color the edge ujvi according to the following rules (see Fig. 3).

(i) c(ujvi) ̸= c(utvi) for any t ∈ [d−

D (vi)] with t ≤ j − 1;
(ii) c(ujvi) /∈ c(y) for any yuj ∈ EGi (uj) with y ̸= vi;
(iii) c(ujvi) /∈ c(z) for any zvi ∈ Fvi (ujvi);

(iv-a) c(ujvi) /∈ c(x) for any vix ∈ E+

D (vi) with c(vix) ∈ c(uj) or dGi (x) ≤ ∆ − 1;
(iv-b) for any vix ∈ E+

D (vi) with c(vix) /∈ c(uj) and dGi (x) = ∆,

c(ujvi) /∈

{
c(x) \ c(gx(vix)), if ∆ ≥ p + 3;
c(x), if ∆ ≤ p + 2.
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Now we estimate the number of forbidden colors for ujvi.
(a) By (i) ujvi and ukvi should be colored with different colors for any k ̸= j, and this requires at most d−

D (vi) − 1
forbidden colors.

(b) The number of forbidden colors from (ii) is at most (q − 1)∆, since |EGi−1 (uj)| = |EGi (uj)| − 1 ≤ q − 1.
(c) For each z with zvi ∈ Fvi (ujvi), |c(z)| ≤ |EGi (z)| ≤ q and the color c(zvi) is already counted as a forbidden color in

(a). Thus the number of forbidden colors from (iii) not counted in (a) is at most (q − 1)⌊ d−

D (vi)
2 ⌋.

Let a = |{vix ∈ E+

D (vi) : c(vix) ∈ c(uj) or dGi (x) ≤ ∆ − 1}|. Then 0 ≤ a ≤ d+

D (vi).
(d) If c(vix) ∈ c(uj), then c(vix) is counted in (b). Thus the number of forbidden colors from (iv-a) not counted in (b)

is at most a(∆ − 1), and the number of forbidden colors from (iv-b) is at most (d+

D (vi) − a)∆ (when ∆ ≤ p + 2) or
(d+

D (vi) − a)(∆ − 1) (when ∆ ≥ p + 3). Hence the number of forbidden colors from (iv-a) and (iv-b) is at most d+

D (vi)∆
(when ∆ ≤ p + 2) or d+

D (vi)(∆ − 1) (when ∆ ≥ p + 3).
Therefore, when ∆ ≥ p + 3, the total number of forbidden colors for ujvi is at most

(q − 1)∆ + (q − 1)
⌊
d−

D (vi)
2

⌋
+ d+

D (vi)(∆ − 1) + d−

D (vi) − 1

= (q − 1)∆ + (q − 1)
⌊
d−

D (vi)
2

⌋
+ d+

D (vi)(∆ − 2) + (d+

D (vi) + d−

D (vi)) − 1

≤ (q − 1)∆ + (q − 1)
(

∆ − d+

D (vi)
2

)
+ d+

D (vi)(∆ − 2) + ∆ − 1 (since d+

D (vi) + d−

D (vi) ≤ ∆)

=
3q − 1

2
∆ +

(
2∆ − 3 − q

2

)
d+

D (vi) − 1

≤
3q − 1

2
∆ +

(
2∆ − 3 − q

2

)
p − 1 (since d+

D (vi) ≤ p)

=
3q + 2p − 1

2
∆ −

p(q + 3)
2

− 1.

If ∆ ≤ p + 2, then similar calculation yields that the number of forbidden colors is at most 3q+2p−1
2 ∆ −

p(q+1)
2 − 1.

Therefore, 3q+2p−1
2 ∆ −

p(q+1)
2 colors (when ∆ ≤ p + 2) or 3q+2p−1

2 ∆ −
p(q+3)

2 colors (when ∆ ≥ p + 3) are enough to
complete the coloring process.

Finally we show that this coloring is indeed a star edge coloring. It suffices to show, in the graph Gi, for each j ∈ [d−

D (vi)],
after coloring ujvi, it does not produce a bicolored path or cycle of length four. Suppose to the contrary that there is a
bicolored path or cycle P of length four containing the edge ujvi. Obviously by (ii), P is not a cycle and vi is not an endpoint
of P . Let ujvix be a subpath in P . Then either c(ujvi) ∈ c(x) or c(vix) ∈ c(uj).

If xvi ∈ E−

D (vi), then x = uk for some k ∈ [d−

D (vi)]. By (ii), c(ujvi) /∈ c(y) for any yuj ∈ EGi (uj) with y ̸= vi, and so
uk is not an endpoint of P . Similarly, uj is not an endpoint of P . This implies c(ujvi) ∈ c(uk) and c(ukvi) ∈ c(uj). By (iii),

ukvi ̸∈ Fvi (ujvi) and ujvi ̸∈ Fvi (ukvi). Thus ρvi (ujvi, ukvi) ≥ ⌊
d−

D (vi)
2 ⌋ + 1 and ρvi (ukvi, ujvi) ≥ ⌊

d−

D (vi)
2 ⌋ + 1. Therefore we can

obtain the following contradiction:

d−

D (vi) = ρvi (ujvi, ukvi) + ρvi (ukvi, ujvi) ≥ 2
⌊
d−

D (vi)
2

⌋
+ 2 ≥ d−

D (vi) + 1.

Now we assume vix ∈ E+

D (vi). By (ii) again, x is not an endpoint of P which implies c(ujvi) ∈ c(x). By (iv-a) and (iv-b),
c(vix) ̸∈ c(uj) and dGi (x) = ∆ ≥ p+3. Thus uj is an endpoint of P . Let P = ujvixx1x2. By (iv-b), x1x ∈ E−

D (x) and xx1 = gx(vix)
(meaning ρx(vix, x1x) = 1).

Since P is bicolored, we have c(xx1) = c(ujvi), and so c(ujvi) = c(xx1) = c(gx(vix)) and dGi−1 (x) = dGi (x) = ∆ ≥ p + 3
by (iv-a) and (iv-b). Hence d−

D (x) ≥ ∆ − p ≥ 3. Note c(vix) ∈ c(x1).

If x1x2 is colored before vix, then x1x ̸∈ Fx(vix) by (iii). But we have d−

D (x) ≥ 3 and 1 = ρx(vix, x1x) ≤ ⌊
d−

D (x)
2 ⌋, which

implies x1x ∈ Fx(vix) by definition, a contradiction.
Now assume that x1x2 is colored after vix. By (ii), x1x2 is oriented from x2 to x1 since c(x1x2) ∈ c(x). By (iv-a) and (iv-b),

we have c(x1x2) = c(gx(x1x)) which implies ρx(x1x, vix) = 1. Thus we obtain the following contradiction:

3 ≤ d−

D (x) = ρx(vix, x1x) + ρx(x1x, vix) = 2.

Therefore c is a star edge coloring and thus completes the proof of the theorem. ■

By modifying the coloring algorithm in the proof of Theorem 3.3, we also obtain another upper bound for ch′
st (G) for

any graph G with a well-ordered (p, q)-star orientation.

Theorem 3.4. Let G be a graph with a well-ordered (p, q)-star orientation (V,D). Let ∆ ≥ 3 be the maximum degree of G
and let q ≥ 2. Then

ch′

st (G) ≤ (p + q)∆ + q2 − 3q − p + 2.
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Proof. We adopt the same notation as in Theorem 3.3 and modify the coloring rules as below.
We assume that Gi−1 is already colored with an edge coloring c and we extend the coloring c to the edges in E−

D (vi)
to obtain a star edge coloring of Gi. Assume that all the edges u1vi, . . .uj−1vi are colored. We are to color the edge ujvi
according to the following rules.

(i) c(ujvi) ̸= c(utvi) for each t ≤ j − 1;
(ii) c(ujvi) /∈ c(y) for any yuj ∈ EGi (uj) with y ̸= vi;
(iii) c(ujvi) /∈ c(z) for any zvi ∈ E−

D (vi) with c(zvi) ∈ c(uj);
(iv) c(ujvi) /∈ c(x) for any vix ∈ E+

D (vi).

Denote b = |c(E−

D (vi)) ∩ c(uj)|. Then b ≤ q − 1. Similar to Theorem 3.3, the total number of forbidden colors for ujvi is
at most

(q − 1)∆ + (q − 1)b + d+

D (vi)∆ + (d−

D (vi) − b − 1)
= (q − 1)∆ + (q − 2)b + d+

D (vi)(∆ − 1) + (d+

D (vi) + d−

D (vi)) − 1
≤ (q − 1)∆ + (q − 2)(q − 1) + p(∆ − 1) + ∆ − 1
= (p + q)∆ + q2 − 3q − p + 1.

Since there are (p + q)∆ + q2 − 3q − p + 2 colors, one can always find a color for ujvi.
Now we show that after coloring ujvi, the new coloring is a star edge coloring. Suppose to the contrary that P is a

bicolored path or cycle of length four containing the edge ujvi. By (ii), P is not a cycle and vi is not an endpoint of P .
Let ujvix be a subpath of P . By (ii) again, x is not an endpoint of P . Thus c(ujvi) ∈ c(x), and so xvi ∈ E−

D (vi) by (iv). Thus
by (iii), c(xvi) ̸∈ c(uj), which implies that uj is an endpoint of P . Denote P = ujvixx1x2 where ujvi, xvi ∈ E−

D (vi) and
c(xvi) = c(x1x2) ∈ c(x1). Thus xx1 and x1x2 both are colored before xvi. By (ii), c(xvi) ̸∈ c(x1), a contradiction. This proves
Theorem 3.4. ■

We shall show that every k-degenerate graph admits a well-ordered (k, k)-star orientation, and then apply Theo-
rems 3.3 and 3.4 to obtain upper bounds on list star edge chromatic index of k-degenerate graphs, which will prove
Theorem 1.9(a) and (b).

Lemma 3.5. Every k-degenerate graph admits a well-ordered (k, k)-star orientation.

Proof. Let G be a k-degenerate graph. We shall find Gn,Gn−1, . . . ,G1 and vn, . . . , v1 recursively. Define Gn = G. We
assume Gi is determined and we are to find vi and Gi−1 according to the following.

(A1) If V≥k+1(Gi) ̸= ∅, choose vi to be a vertex in V≥k+1(Gi) whose degree is at most k in the subgraph Gi[V≥k+1(Gi)] of Gi
induced by V≥k+1(Gi).

(A2) If V≥k+1(Gi) = ∅ and E(Gi) ̸= ∅, choose vi to be a vertex with maximum degree in Gi.
(A3) If V≥k+1(Gi) = ∅ and E(Gi) = ∅, let vi be any vertex in V (G) \ {vn, . . . , vi+1}.
(B) For each edge uvi ∈ E(Gi) with |EGi (u)| ≤ k, orient the edge uvi from u to vi.
(C) Set Gi−1 = Gi − {uvi ∈ E(Gi) : |EGi (u)| ≤ k}.
Note that, in (A1) such a vertex exists since G is k-degenerate graph and Gi[V≥k+1(Gi)] is a subgraph of G. We claim that

this defines a proper vertex enumeration V = (v1, v2, . . . , vn). To this end, we show that vi ̸= vj for any i ̸= j. Suppose to
the contrary that a vertex v is labeled with vi and vj for some i > j.

We first claim that the degree of vj in Gj is not zero. Otherwise, E(Gj) = ∅ by (A2) and (A3), and by (A3) again, vj is not
selected, a contradiction. Thus vi ∈ V≥k+1(Gi) otherwise the degree of vi is zero in Gt for any t = i − 1, . . . , j by (C). By
(C), for every w such that viw ∈ EGi (vi) \ E−

D (vi), |EGi−1 (w)| ≥ k + 1. Furthermore, by (A1) and (C), we have EGi−1 (vi) ≤ k.
Thus according to (A1), w is always chosen before vertex vj for every w such that viw ∈ E−

D (w). This implies that vj has
degree zero in Gj, a contradiction. This proves vi ̸= vj for any i ̸= j.

Clearly, this defines an orientation D satisfying (a) and (b) in Definition 3.1. Therefore, (V,D) is a well-ordered (k, k)-star
orientation with V = (v1, v2, . . . , vn). ■

Proof of Theorem 1.9 (a) and (b). Theorem 1.9(a) with ∆ ≥ k+ 3 and Theorem 1.9(b) are implied by Theorems 3.3 and
3.4 with p = q = k, together with Lemma 3.5. It remains to show Theorem 1.9(a) when ∆ ∈ {k, k + 1, k + 2}. We may
also assume ∆ ≥ 4 as the case of ∆ = 2 is trivial and the case of ∆ = 3 follows from Theorem 1.7 (see also [12]).

We compare the bounds in Theorem 2.6 with the desired bound 5k−1
2 ∆−

k(k+3)
2 in all cases. The bounds in Theorem 2.6

are better when ∆ ∈ {k, k + 1}. For the case of ∆ = k + 2, when ∆ is odd we have k ≥ 3 and(
5k − 1

2
∆ −

k(k + 3)
2

)
−

(
∆2

+
k − 5
2

∆ +
3k + 3

2

)
=

1
2
k2 − k −

3
2

≥ 0;

when ∆ is even and k ≥ 4, we have(
5k − 1

2
∆ −

k(k + 3)
2

)
−

(
∆2

+
k − 4
2

∆ + 2k − 1
)

=
1
2
k2 − 2k ≥ 0.
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Fig. 4. A possible configuration.

Now it remains to verify the final case that ∆ = 4 and k = 2. That is, we will show the following statement.
Every 2-degenerate graph G with maximum degree 4 is star 13-edge-choosable.
Let G together with an edge 13-list L be a counterexample to the above statement with |E(G)| minimized.
Let xy ∈ E(G). By the minimality of G, G − xy has a list star edge coloring c with c(e) ∈ L(e) for each e ∈ E(G) \ {xy}.

Denote A(xy) =
⋃

w∈N(x)∪N(y)\{x,y} c(w).
(I) For any xy ∈ E(G), |A(xy)| ≥ 13 and thus δ(G) = 2.
Otherwise, L(xy) \ A(xy) ̸= ∅. Thus one can always pick a color in L(xy) \ A(xy) to color xy to extend c to be a list star

edge coloring of G, a contradiction.
Let z be a vertex with minimum degree in G[V≥3]. Then z has a neighbor x1 of degree 2 in G since G is 2-degenerate

and δ(G) = 2.
(II) dG(z) = 4 and z has exactly two neighbors of degree 2.
If dG(z) = 3, then |A(zx1)| ≤ 4 + 4 + 4 = 12 < 13, a contradiction to (I).
If z has at least three neighbors of degree 2, then |A(zx1)| ≤ 4 + 4 + 2 + 2 = 12 < 13, a contradiction to (I) again.
By (II), let x1 and x2 be the two neighbors of z with degree 2 and z1, z2 be the other two neighbors of z. Let xii ̸= z be

the other neighbor of xi for each i = 1, 2 (see Fig. 4).
By the minimality of G, let c ′ be a star edge coloring of G − x1 − x2. We are to extend c ′ to a star edge coloring

c of G below. Since |
⋃

x∈N(xii)\{xi}
c ′(x)| ≤ 12 and |L(xixii)| = 13 for each i = 1, 2, we first color xixii with a color in

L(xixii) \
⋃

x∈N(xii)\{xi}
c ′(x). Denote c to be the new coloring of G − zx1 − zx2 after coloring x1x11 and x2x22.

(III) c(xixii) /∈ c(z) for each i = 1, 2.
Without loss of generality, assume that c(x1x11) ∈ c(z). Then |c(z1) ∪ c(z2) ∪ c(x11)| ≤ 11, and we first color zx1 with

a color α such that α ∈ L(zx1) \ [c(z1) ∪ c(z2) ∪ c(x11)] and α ̸= c(x2x22). Clearly, this coloring of G − zx2 is a star edge
coloring of G − zx2. If c(x2x22) ∈ c(z), then |A(zx2)| ≤ 12 since c(x1x11) ∈ c(z), a contradiction to (I). Thus, c(x2x22) ̸∈ c(z).

Since c(x1x11) ∈ c(z), |c(z1) ∪ c(z2) ∪ c(x1) ∪ {c(x2x22)}| ≤ 10, and so we color zx2 with a color β ∈ L(zx2) \ [c(z1) ∪

c(z2) ∪ c(x1) ∪ {c(x2x22)}].
We verify that this results in a star edge coloring. Suppose that P is a bicolored path (or cycle) of length four containing

zx2. By the coloring of zx2, we have |P ∩ E(t)| ≤ 1 for each t ∈ {z1, z2, x1}, and so |P ∩ E(x22)| = 2 and z is an endpoint of
P since c(x2x22) /∈ c(z). However c(x2x22) ̸∈ c(w) for each w ∈ N(x22) and w ̸= x2. This implies that the length of P is at
most three and thus proves (III).

The final step: By (III), we may assume c(xixii) /∈ c(z) for each i = 1, 2. Since |c(z1) ∪ c(z2) ∪ {c(x1x11), c(x2x22)}| ≤ 10,
one can color the edges zx1, zx2 properly such that c(zxi) ∈ L(zxi) \ [c(z1) ∪ c(z2) ∪ {c(x1x11), c(x2x22)}] for each i = 1, 2.

It remains to check this is a star edge coloring. Suppose that P is a bicolored path or cycle of length four containing
zx1 or zx2. Without loss of generality, assume that P contains zx1. For each i = 1, 2, zi is not an endpoint of P since
c(x1x11) ̸∈ c(z) and zi is not contained in P either since c(zx1) ̸∈ c(zi) for each i = 1, 2.

Since c(x1x11) ̸∈
⋃

x∈N(x11)\{x1}
c(x), z is not an endpoint of P . Thus P contains x1zx2. Since |E(P)| = 4, either

c(zx1) = c(x2x22) or c(zx2) = c(x1x11). However by the choice of c(zxi), c(zxi) ̸∈ {c(x1x11), c(x2x22)} for each i = 1, 2.
This contradiction proves that c is a star edge coloring of G and thus completes the proof. ■
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