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a b s t r a c t

Amod (2p+1)-orientation D is an orientation of G such that d+

D (v) ≡ d−

D (v) (mod 2p+1)
for any vertex v ∈ V (G). Extending Tutte’s integer flow conjectures, it was conjectured by
Jaeger that every 4p-edge-connected graph has a mod (2p + 1)-orientation. However, this
conjecture has been disproved in Han et al. (2018) recently. Infinite families of 4p-edge-
connected graphs (for p ≥ 3) and (4p + 1)-edge-connected graphs (for p ≥ 5) with no
mod (2p + 1)-orientation are constructed in Han et al. (2018). In this paper, we show
that every family of graphs with bounded independence number has only finitely many
contraction obstacles for admittingmod (2p+1)-orientations, contrasting to those infinite
families. More precisely, we prove that for any integer t ≥ 2, there exists a finite family
F = F(p, t) of graphs that do not have a mod (2p + 1)-orientation, such that every graph
G with independence number at most t either admits a mod (2p + 1)-orientation or is
contractible to a member in F . This indicates that the problem of determining whether
every k-edge-connected graphwith independence number atmost t admits amod (2p+1)-
orientation is computationally solvable for fixed k and t . In particular, the graph family
F(p, 2) is determined, and our results imply that every 8-edge-connected graph G with
independence number at most two admits a mod 5-orientation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider graphs which are finite and loopless, with possible parallel edges. We follow [1] for undefined
terms and notation. Let Z denote the set of integers. For k ∈ Zwith k > 1, let [k] = {1, 2, . . . , k} and Zk denote the set of all
integers modulo k, as well as the (additive) cyclic group of order k. Following [1], for a graph G, α(G), κ ′(G), and δ(G) denote
the independence number, the edge-connectivity, and theminimum degree, respectively. For each edge e ∈ E(G), letµ(e) be
the maximum number of edges joining the two end vertices of e, and denoted µ(G) = max{µ(e) : e ∈ E(G)} to be the edge
multiplicity of G. For vertex subsets U,W ⊆ V (G), let [U,W ]G = {uw ∈ E(G)|u ∈ U, w ∈ W }. When U = {u} or W = {w},
we use [u,W ]G or [U, w]G for [U,W ]G, respectively. For notational convenience, we also denote EG(v) = [v, V (G)−{v}] and
∂G(S) = [S, V (G) − S] for v ∈ V (G) and S ⊆ V (G). The subscript G may be omitted when G is understood from the context.
For an edge set X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X ,
and then deleting the resulting loops. If H is a subgraph of G, then we use G/H for G/E(H).

Let D = D(G) denote an orientation of G. For each v ∈ V (G), let E+

D (v) (E−

D (v), respectively) be the set of all arcs directed
out from (into, respectively) v. Following [1], d+

D (v) = |E+

D (v)| and d−

D (v) = |E−

D (v)| denote the out-degree and the in-degree
of v under the orientation D, respectively. If a graph G has an orientation D such that d+

D (v) − d−

D (v) ≡ 0 (mod k) for every
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vertex v ∈ V (G), then we say that G admits a modulo k-orientation, or a mod k-orientation for short. Let Mk denote the
family of all graphs admitting a mod k-orientation. As a connected graph G has a modulo 2p-orientation if and only if G is
Eulerian, we focus on the case when k = 2p + 1 is odd in this paper. We shall always assume that p is a positive integer
throughout this paper.

The concept of modulo orientation is motivated by the integer flow of graphs introduced by Tutte [17,18]. An integer
flow of a graph G is an ordered pair (D, f ), where D is an orientation and f is a mapping from E(G) to integers such that∑

e∈E+

D (v)f (e) −
∑

e∈E−

D (v)f (e) = 0 for every vertex v ∈ V (G). An integer flow (D, f ) is called a nowhere-zero k-flow if

1 ≤ |f (e)| ≤ k−1 for each edge e ∈ E(G). Jaeger [5] observed that, in a graph G, the existence of amod (2p+1)-orientation is
equivalent to the existence of an integer flow (D, f ) with |f (e)| ∈ {p, p+1} for each e ∈ E(G), which is called a circular (2+

1
p )-

flow. In particular, it is well-known that a graph admits a nowhere-zero 3-flow if and only if it admits a mod 3-orientation
(see [17,20,5]). Tutte’s 3-flow conjecture (see [1]) can be stated as follows.

Conjecture 1.1 (Tutte). Every 4-edge-connected graph admits a mod 3-orientation.

In addition, as observed by Jaeger [5], Tutte’s famous 5-flow conjecture [18], which asserts that every bridgeless graph
admits a nowhere-zero 5-flow, is implied by the following conjecture.

Conjecture 1.2 (Jaeger, [5]). Every 9-edge-connected graph admits a mod 5-orientation.

It was originally conjectured by Jaeger [4] that every 4p-edge-connected graph admits a mod (2p+1)-orientation, known as
the circular flow conjecture. Thomassen [16] settled the weak version of 3-flow conjecture and the weak version of Jaeger’s
circular flow conjecture by showing every 8-edge-connected graph admits a mod 3-orientation and every (2k2 + k)-edge-
connected graph admits a mod k-orientation. Lovász, Thomassen, Wu and Zhang [14,19] further refined the method to show
that every 6p-edge-connected graph admits a mod (2p + 1)-orientation. Very recently, infinite families of 4p-edge-connected
graphswith nomod (2p+1)-orientationwere constructed in [3] for every p ≥ 3. There exist (4p+1)-edge-connected graphs
admitting no mod (2p + 1)-orientation for every p ≥ 5, as well. A new conjecture on modulo orientation is proposed in [3],
that for every positive integer p, there exists a positive constant ε = ε(p) < 1

2 such that every ⌈(4 + ε)p⌉-edge-connected graph
admits a mod (2p+ 1)-orientation. This suggests that while the connectivity requirement may increase for larger p, the truth
of the new conjecture still implies Tutte’s 3-flow conjecture and 5-flow conjecture by results of Kochol [7] and Jaeger [5].
The readers are referred to [21] or [10] for a comprehensive introduction on integer flows and modulo orientations.

In this paper, we investigate mod (2p + 1)-orientations of graphs with bounded independence numbers. It is known
that the complete graph K4p does not admit a mod (2p+ 1)-orientation. Since the modulo orientation property is preserved
under contraction, it is straightforward to construct an infinite family of graphs of independence number two without mod
(2p + 1)-orientation by replacing a vertex of K4p with a large complete graph. On the other hand, all those graphs have the
behavior that each of them is contractible to K4p. So wemay expect to characterize mod (2p+1)-orientation in the family of
graphs with bounded independence number by excluding a list of graphs such that every graph in the family admits a mod
(2p + 1)-orientation if and only if it is not contractible to one of the graphs on the list, such as in Kuratowski’s theorem for
planar graphs and characterization of graphs embedded on surface by excluding minors. Our first main result asserts that it
is indeed the case and such a list contains finitely many graphs only.

Let t ≥ 1 be an integer, and define a finite graph family G0(t) to be

G0(t) = {G : G ̸∈ M2p+1, α(G) ≤ t, µ(G) ≤ 2p − 1 and |V (G)| ≤ 6pt − 2p}.

Theorem 1.3. For any graph Gwith α(G) ≤ t, G admits a mod (2p+1)-orientation if and only if G is not contractible to amember
in G0(t).

As a corollary of Theorem1.3, for a given integer k > 0, in order to seekmod (2p+1)-orientations for all k-edge-connected
graphs with independence number at most t , it suffices to search such graphs on at most 6pt − 2p vertices, which consist of
only finitely many graphs and is computationally solvable.

Corollary 1.4. The following are equivalent.
(i) Every k-edge-connected graph G with α(G) ≤ t admits a mod (2p + 1)-orientation.
(ii) Every k-edge-connected graph G with α(G) ≤ t, µ(G) ≤ 2p − 1 and |V (G)| ≤ 6pt − 2p admits a mod (2p + 1)-orientation.

To obtain Theorem 1.3, we need to introduce orientation with boundaries. For a graph G, a function b : V (G) → Z2p+1 is
called a boundary function of G, or boundary for short, if

∑
v∈V (G)b(v) ≡ 0 (mod 2p + 1). Denote Z(G,Z2p+1) to be the set of

all boundary functions of G. Motivated by the group connectivity property defined by Jaeger et al. [6], the concept of strongly
Z2p+1-connectednesswas introduced in [9] (see also [8]), serving as contractible configurations formod (2p+1)-orientations.

Definition 1.5. A graph G is strongly Z2p+1-connected if, for every b ∈ Z(G,Z2p+1), there is an orientation D such that
d+

D (v) − d−

D (v) ≡ b(v) (mod 2p + 1) for every vertex v ∈ V (G).
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Let ⟨SZ2p+1⟩ denote the family of all strongly Z2p+1-connected graphs.
Liang et al. [13] proved that the graph family ⟨SZ2p+1⟩ consists of exactly all mod (2p + 1)-orientation contractible

configurations, that is, all those graphs G such that for every supergraph Γ containing G as a subgraph, Γ /G has a mod
(2p + 1)-orientation if and only if Γ has a mod (2p + 1)-orientation.

A subgraph H of G is called amaximal ⟨SZ2p+1⟩-subgraph of G if H ∈ ⟨SZ2p+1⟩ and for any subgraph L of G containing H
as a proper subgraph, L ̸∈ ⟨SZ2p+1⟩. Since K1 ∈ ⟨SZ2p+1⟩ by definition, every vertex of a graph G lies in a maximal ⟨SZ2p+1⟩-
subgraph of G. Let H1,H2, . . . ,Hc denote the collection of all maximal ⟨SZ2p+1⟩-subgraph of G. Then G′

= G/(∪c
i=1E(Hi))

is the ⟨SZ2p+1⟩-reduction of G, and we also say G is ⟨SZ2p+1⟩-reduced to G′. A graph G is ⟨SZ2p+1⟩-reduced if G does not
have any nontrivial subgraph in ⟨SZ2p+1⟩. By definition, the ⟨SZ2p+1⟩-reduction of a graph is always ⟨SZ2p+1⟩-reduced. Since
contractionmay bring in newparallel edges, evenwhenG is a simple graph, its ⟨SZ2p+1⟩-reductionmay havemultiple edges.
As the counterexamples constructed in [3] are indeed ⟨SZ2p+1⟩-reduced graphs, the following is also obtained in [3]: there
exists infinitelymany (4p+1)-edge-connected ⟨SZ2p+1⟩-reduced graphs for every p ≥ 5.While in this paper,we show that there
are finitely many ⟨SZ2p+1⟩-reduced graph in the family of graphs with bounded independence number (see Corollary 2.4).

Theorem 1.3 is an immediate corollary of the following Theorem 1.6. In Theorem 1.6, the ⟨SZ2p+1⟩-reduction operation,
a special contraction which preserves mod (2p + 1)-orientations, would be used to replace a general contraction operation.

For any integer t > 0, define F(t) and G(t) to be graph families such that

F(t) = {G : G is ⟨SZ2p+1⟩-reduced with 2 ≤ |V (G)| ≤ 6pt − 2p and α(G) ≤ t} and
G(t) = F(t) \ M2p+1.

Theorem 1.6. Let t > 0 be an integer. Each of the following holds.
(i) A graph G with α(G) ≤ t is strongly Z2p+1-connected if and only if the ⟨SZ2p+1⟩-reduction of G is not in F(t).
(ii) A graph G with α(G) ≤ t admits a modulo (2p + 1)-orientation if and only if the ⟨SZ2p+1⟩-reduction of G is not in G(t).

More descriptions concerning the graph families F(t) and G(t) will be presented below when t = 2. In particular,
Theorem 1.7 confirms that simple graphs with independence number 2 and large order admit mod (2p + 1)-orientations
under edge-connectivity 4p.

Let Kn denote a complete graphwith V (Kn) = {v1, . . . , vn}. For nonnegative integers s1, s2, ..., sn−1, let Kn(s1, s2, . . . , sn−1)
be the graph obtained from Kn by replacing the edge vnvi by si parallel edges joining vn and vi, for each i ∈ [n−1], and define

K(2p + 1) = {Kn(s1, s2, . . . , sn−1) : 2 ≤ n ≤ 4p + 1 and 0 ≤ si ≤ 2p − 1, ∀i ∈ [n − 1]},

K1(2p + 1) = K(2p + 1) \ M2p+1 and K2(2p + 1) = K(2p + 1) \ ⟨SZ2p+1⟩. (1)

Theorem 1.7. Let G be a simple graph of order at least 10p + 1 with α(G) ≤ 2. Each of the following holds.
(i) G admits a mod (2p + 1)-orientation if and only if the ⟨SZ2p+1⟩-reduction of G is not in K1(2p + 1).
(ii) G is strongly Z2p+1-connected if and only if the ⟨SZ2p+1⟩-reduction of G is not in K2(2p + 1).
(iii) If κ ′(G) ≥ 2p and δ(G) ≥ 4p, then G is strongly Z2p+1-connected (and therefore, admits a mod (2p + 1)-orientation).

As mod 5-orientation of graphs with multiple edges is related to 5-flow conjecture (see [5,10]), we also show the
corresponding Theorem 1.8 for all graphs with independence number two in the mod 5-orientation case. Note that this
verifies Conjecture 1.2 for all graphs with order at least 21 and independence number at most two.

Let K∗(5) be the family of graphs such that H ∈ K∗(5) if and only if H ̸∈ M5, H is ⟨SZ5⟩-reduced, and H contains a
subgraph isomorphic to K|V (H)|−1 with 2 ≤ |V (H)| ≤ 9 and κ ′(H) ≤ 7.

Theorem 1.8. Let G be a graph of order at least 21 with α(G) ≤ 2. Each of the following holds.
(i) G admits a mod 5-orientation if and only if the ⟨SZ2p+1⟩-reduction of G is not in K∗(5).
(ii) G admits a mod 5-orientation provided it is 8-edge-connected.

Luo et al. [15] characterized mod 3-orientations of graphs with independence number at most 2, and thus verifies Tutte’s
3-flow conjecture for graphs with independence number at most 2. In a consequence paper [11], Li, Luo and Wang adopt a
similar idea as in this paper and develop some new reduction method to obtain analogous results for mod 3-orientations.
The results in paper [11] further confirm Tutte’s 3-flow conjecture for graphs with independence number at most 4.

The remainder of this paper is organized as follows: In Section 2, we introduce some tools and give the proofs of
Theorems 1.6 and 1.7. The proof of Theorem 1.8 is presented in Section 3, and we conclude this paper with a few remarks in
the last section.

2. Reductions on mod (2p + 1)-orientations

2.1. Some tools

We first display the needed tools in our proofs of themain results. Lemma2.1 is a brief summary of certain basic properties
from [8,9,12].
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Lemma 2.1 ([8,9] and [12]). Let G be a graph and let m, p > 0 be integers. Each of the following holds.
(i) If G ∈ ⟨SZ2p+1⟩ and e ∈ E(G), then G/e ∈ ⟨SZ2p+1⟩.
(ii) If H ⊆ G, and if both H ∈ ⟨SZ2p+1⟩ and G/H ∈ ⟨SZ2p+1⟩, then G ∈ ⟨SZ2p+1⟩.
(iii) Let mK2 denote the loopless graph with two vertices and m parallel edges. Then mK2 ∈ ⟨SZ2p+1⟩ if and only if m ≥ 2p.
(iv) The complete graph Kn ∈ ⟨SZ2p+1⟩ if and only if n = 1 or n ≥ 4p + 1.
(v) G ∈ M2p+1 if and only if its ⟨SZ2p+1⟩-reduction G′

∈ M2p+1.
(vi) G ∈ ⟨SZ2p+1⟩ if and only if its ⟨SZ2p+1⟩-reduction G′

= K1.

Let G be a graph and b ∈ Z(G,Z2p+1) be a boundary function. Define an integer valued mapping τ : 2V (G)
↦→ {0, ±1, . . . ,

±(2p + 1)} as follows: for each vertex x ∈ V (G),

τ (x) ≡

{
d(x) (mod 2);
b(x) (mod 2p + 1). (2)

For a vertex set A ⊂ V (G), let b(A) ≡
∑

v∈Ab(v) (mod 2p + 1), d(A) = |[A, V (G) − A]G| and define τ (A) to be

τ (A) ≡

{
d(A) (mod 2);
b(A) (mod 2p + 1). (3)

Theorem 2.2 (Lovász, Thomassen, Wu and Zhang, Theorem 3.1 of [14]). Let G be a graph and b ∈ Z(G,Z2p+1). Let z0 be a vertex
of V (G), and let Dz0 be a pre-orientation of E(z0). Assume that
(i) |V (G)| ≥ 3,
(ii) d(z0) ≤ 4p + |τ (z0)|, and the edges incident with z0 are pre-directed such that d+(z0) − d−(z0) ≡ b(z0) (mod 2p + 1).
(iii) d(A) ≥ 4p + |τ (A)| for each nonempty A ⊆ V (G) \ {z0} with |V (G) \ A| ≥ 2.
Then Dz0 can be extended to an orientation D of the entire graph G such that, for each vertex x ∈ V (G),

d+

D (x) − d−

D (x) ≡ b(x) (mod 2p + 1).

Theorem 2.2 implies that every 6p-edge-connected graph is strongly Z2p+1-connected. We would further explore more
properties concerning ⟨SZ2p+1⟩-reduced graphs below by utilizing Theorem 2.2.

2.2. Proof of Theorem 1.6

Recall thatG ∈ F(t) if and only ifG is ⟨SZ2p+1⟩-reducedwith 2 ≤ |V (G)| ≤ 6pt−2p andα(G) ≤ t . By Lemma 2.1(iii), every
graph in F(t) has edge multiplicity at most 2p − 1, and so F(t) contains finitely many graphs. Note that, by Lemma 2.1(v),
Theorem 1.3 is a weak version of Theorem 1.6(ii), and Theorem 1.6(ii) follows from Theorem 1.6(i). We will show a variation
of Theorem 1.6(i), as stated in Theorem 2.3.

Theorem 2.3. For any graph G with α(G) ≤ t, G is strongly Z2p+1-connected if and only if the ⟨SZ2p+1⟩-reduction of G is not in
F(t).

Proof. By Lemma 2.1(vi), a graph G is strongly Z2p+1-connected if and only if its ⟨SZ2p+1⟩-reduction is K1, which is not in
F(t) by definition. So it remains to show that

if the ⟨SZ2p+1⟩-reduction of G is not in F(t), then G ∈ ⟨SZ2p+1⟩. (4)

We shall prove (4) by induction on t . When t = 1, (4) follows from Lemma 2.1(iv). Assume that t ≥ 2 and (4) holds for
smaller values of t .

Let Γ be a counterexample to (4) such that |V (Γ )| is minimal. Then Γ ′, the ⟨SZ2p+1⟩-reduction of Γ , satisfies |V (Γ )| ≥

6pt − 2p+ 1 by the definition of F(t). Hence Γ ′ itself is a counterexample to (4), and so |V (Γ ′)| = |V (Γ )| by the minimality
of |V (Γ )|. Therefore, Γ = Γ ′ is a ⟨SZ2p+1⟩-reduced graph.

Claim A. δ(Γ ) ≥ 6p.

Suppose that Γ has minimal degree at most 6p − 1 and let z ∈ V (Γ ) be a vertex with dΓ (z) = δ(Γ ) ≤ 6p − 1. Denote
H = Γ −(NΓ (z)∪{z}). Then α(H) ≤ α(Γ )−1 ≤ t−1. AsH is ⟨SZ2p+1⟩-reduced, we have |V (H)| ≤ 6p(t−1)−2p by (4) with
induction hypothesis on t−1. It follows that 6pt−2p+1 ≤ |V (Γ )| = |V (H)|+|NΓ (z)∪{z}| ≤ 6p(t−1)−2p+6p = 6pt−2p.
This contradiction justifies Claim A.

Now assume δ(Γ ) ≥ 6p. By Theorem 2.2, κ ′(Γ ) < 6p, and so Γ must have an edge cut of size less than 6p. For a vertex
subset W ⊂ V (Γ ), let W c

= V (Γ ) − W . Among all edge-cuts [W ,W c
] of size at most 6p − 1 in Γ , choose one with |W |

minimized. As δ(Γ ) ≥ 6p, we have |W | ≥ 2. Let G1 = Γ /Γ [W c
] and z0 be the vertex in G1 onto which W c is contracted.

Thus dG1 (z0) = |[W ,W c
]| ≤ 6p − 1.

Arbitrarily add a set Z of 6p + 1 − dG1 (z0) new edges between z0 andW in G1 to form a new graph G. Note that Γ [W ] =

G1[W ] = G[W ] = G − z0. We will apply Theorem 2.2 to show the following Claim B, leading a contradiction to the fact that
Γ is a ⟨SZ2p+1⟩-reduced graph.
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Claim B. Γ [W ] = G − z0 is strongly Z2p+1-connected.

Let Dz0 be a fixed orientation of EG(z0) such that

4p + 1 edges are oriented out of z0 and the rest 2p edges are oriented into z0. (5)

We also use Dz0 to denote the digraph induced by the oriented edges of Dz0 . Define b1(v) = d+

Dz0
(v)− d−

Dz0
(v) for each vertex

v ∈ NG(z0) ∪ {z0}.
For any b′

∈ Z(G − z0,Z2p+1), we are to show that there exists an orientation D′ of G − z0 such that d+

D′ (v) − d−

D′ (v) ≡

b′(v) (mod 2p + 1) for any vertex v ∈ V (G − z0). Define a mapping b : V (G) → Z2p+1 as follows. For any x ∈ V (G),

b(x) ≡

{b′(x) + b1(x) (mod 2p + 1) if x ∈ NG(z0);
b1(z0) (mod 2p + 1) if x = z0;
b′(x) (mod 2p + 1) otherwise.

We are going to show Theorem 2.2 is applicable to this graph G.
As b1(z0)+

∑
v∈NG(z0)

b1(v) = 0 and b′
∈ Z(G−z0,Z2p+1), we have

∑
x∈V (G)b(x) = b1(z0)+

∑
v∈NG(z0)

b1(v)+
∑

v∈V (G−z0)
b′(v)

≡ 0 (mod 2p + 1), and so b ∈ Z(G,Z2p+1). Since |W | ≥ 2, |V (G)| ≥ 3. By (5), both d(z0) = 6p + 1 and b(z0) = d+

Dz0
(z0)

− d−

Dz0
(z0) ≡ 0 (mod 2p + 1). This, together with (2), implies |τ (z0)| = 2p + 1, and so Theorem 2.2(i) and (ii) are satisfied.

By (3) and by the minimality of W , for any A ⊂ W with |A| < |W |, we have d(A) ≥ 6p, or d(A) − 4p ≥ 2p. As
d(A) ≡ τ (A) (mod 2) and |τ (A)| ≤ 2p + 1, it follows by a parity argument that d(A) ≥ 4p + |τ (A)|. Thus Theorem 2.2(iii)
holds, and hence it holds also for the graph G.

By Theorem 2.2, there exists an orientation D of G such that d+

D (x)− d−

D (x) ≡ b(x) (mod 2p+ 1) for each vertex x ∈ V (G).
Let D′ be the restriction of D on G − z0. By the definition of b, we have d+

D′ (v) − d−

D′ (v) ≡ b′(v) (mod 2p + 1) for each vertex
v ∈ V (G − z0). It follows by definition that Γ [W ] = G − z0 is strongly Z2p+1-connected, and thus Claim B holds.

Since |W | ≥ 2, Claim B is contrary to the assumption that Γ is ⟨SZ2p+1⟩-reduced. This proves Theorem 2.3. □

Theorem 2.3 immediately leads the following corollary, which reveals that there are finitely many ⟨SZ2p+1⟩-reduced
graph in the family of graphs with independence number at most t .

Corollary 2.4. Every ⟨SZ2p+1⟩-reduced graph G with α(G) ≤ t has order at most 6pt − 2p.

2.3. Proof of Theorem 1.7

We need onemore lemma before presenting the proof of Theorem 1.7. For a graph G, let ξ (G) be the number of nontrivial
maximal ⟨SZ2p+1⟩-subgraphs of G.

Lemma 2.5. If G is a simple graph with α(G) ≤ 2, then ξ (G) ≤ 2. Furthermore, ξ (G) = 2 if and only if V (G) consists of vertex
sets of exactly two maximal ⟨SZ2p+1⟩-subgraphs.

Proof. Assume that c = ξ (G) ≥ 2 and let H1,H2, . . . ,Hc be the nontrivial maximal ⟨SZ2p+1⟩-subgraphs of G. By
Lemma 2.1(iv), every strongly Z2p+1-connected simple graph other than K1 has order at least 4p+1, and so |V (Hi)| ≥ 4p+1
for each 1 ≤ i ≤ c.

By contradiction, we assume that c ≥ 3, and so there exists a vertex v ∈ V (G) \ (V (H1) ∪ V (H2)). By Lemma 2.1(ii)(iii),
both |[v, V (H1)]G| ≤ 2p − 1 and |[V (H2), V (H1)]G| ≤ 2p − 1. Since |V (H1)| ≥ 4p + 1, there exists u1 ∈ V (H1) such that
u1v ̸∈ E(G) and |[u1, V (H2)]G| = 0. Similarly, there exists u2 ∈ V (H2) such that u2v ̸∈ E(G) and |[u2, V (H1)]G| = 0. Then it
follows that {u1, u2, v} is an independent set of size 3, contradicting to α(G) ≤ 2. This proves that we must have ξ (G) ≤ 2,
and when ξ (G) = 2, V (G) = V (H1) ∪ V (H2). □

Proof of Theorem 1.7. Since ⟨SZ2p+1⟩ ⊆ M2p+1, we have K1(2p + 1) = K2(2p + 1) \ M2p+1 by (1). Thus by Lemma 2.1(v),
Theorem 1.7(i) follows from Theorem 1.7(ii), and so it suffices to show Theorem 1.7(ii). Let G be a graph satisfying the
hypotheses of Theorem 1.7, and let H1,H2, . . . ,Hc denote the collection of all maximal strongly Z2p+1-connected subgraphs
of G, where |V (H1)| ≥ |V (H2)| ≥ · · · ≥ |V (Hc)| and c ≥ 2, and G′

= G/(H1 ∪ · · · ∪ Hc) is the ⟨SZ2p+1⟩-reduction of G.
Proof of (ii). We prove that if G is not strongly Z2p+1-connected, then G′ is in K2(2p + 1).
If G is not connected, then as α(G) ≤ 2, G must be a disjoint union of two complete graphs, where the larger one has

order at least 5p + 1. By (1) and Lemma 2.1(iv), the ⟨SZ2p+1⟩-reduction of G is a member in K2(2p + 1) with s1 = · · · =

sn−1 = 0. Hence we assume that G is connected and not strongly Z2p+1-connected. By Lemma 2.1(iv) and Corollary 2.4,
|V (H1)| ≥ 4p + 1. By Lemma 2.5, either |V (H2)| > 1 and V (G) = V (H1) ∪ V (H2) or |V (H2)| = 1. If V (G) = V (H1) ∪ V (H2), let
m = |[V (H2), V (H1)]G|. If m ≥ 2p, then as G/(H1 ∪ H2) is an mK2 ∈ ⟨SZ2p+1⟩, it follows by Lemma 2.1(ii) that G ∈ ⟨SZ2p+1⟩,
contrary to the assumption that G is not strongly Z2p+1-connected. Hencem ≤ 2p − 1, and so G′

= mK2 ∈ K2(2p + 1).
Assume that |V (H2)| = 1. Then H1 is the only non-trivial maximal strongly Z2p+1-connected subgraphs of G. Let

V ′
= V (G) \ V (H1). We claim that G[V ′

] is a complete graph. Suppose to the contrary that there exist vertices v1, v2 ∈ V ′
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such that v1v2 ̸∈ E(G[V ′
]). By Lemma 2.1(ii)(iii), |[v1, V (H1)]G| ≤ 2p − 1 and |[v2, V (H1)]G| ≤ 2p − 1. Thus there exists

u ∈ V (H1) such that uv1 ̸∈ E(G) and uv2 ̸∈ E(G) by |V (H1)| ≥ 4p + 1. It follows that {u, v1, v2} is an independent set,
contrary to the assumption of α(G) ≤ 2. Therefore, G[V ′

] is a complete graph. By Lemma 2.1(iv), we have |V ′
| ≤ 4p. Thus the

⟨SZ2p+1⟩-reduction of G is in K2(2p + 1). This proves (ii).
Proof of (iii). If κ ′(G) ≥ 2p and δ(G) ≥ 4p, we show that the ⟨SZ2p+1⟩-reduction G′ is not inK2(2p+1), and so G ∈ ⟨SZ2p+1⟩

follows from (ii). By Lemma 2.5, if G has two nontrivial maximal strongly Z2p+1-connected subgraphs H1 and H2, then
V (G) = V (H1)∪V (H2), and so G/(H1∪H2) is amK2, wherem = |[V (H2), V (H1)]G|. Ifm ≤ 2p−1, then G′

= mK2 ∈ K2(2p+1),
contrary to the assumption that κ ′(G′) ≥ κ ′(G) ≥ 2p. Thus m ≥ 2p and so by Lemma 2.1(ii) that G ∈ ⟨SZ2p+1⟩. Hence we
assume that G does not have two nontrivial maximal strongly Z2p+1-connected subgraphs. By Corollary 2.4 and Lemma 2.5,
G has exactly one nontrivial maximal strongly Z2p+1-connected subgraph H1. Moreover, G − V (H1) is a complete graph as
showed above in the proof of (ii). Let u∗ be the vertex in G′ onto which H1 is contracted. Since δ(G) ≥ 4p, for any vertex
v ∈ V (G′

− u∗), we have |[u∗, v]G′ | ≥ 4p + 1 − |V ′
|, and so G′ contains a spanning subgraph isomorphic to K4p+1/K4p+1−|V ′|.

By Lemma 2.1(i)(iv), K4p+1/K4p+1−|V ′| ∈ ⟨SZ2p+1⟩, and so G′
∈ ⟨SZ2p+1⟩. This contradicts that G′ is ⟨SZ2p+1⟩-reduced, unless

|V (G′)| = 1. Therefore, G ∈ ⟨SZ2p+1⟩ by Lemma 2.1(vi). □

3. On mod 5-orientations

The odd-edge-connectivity of a graph is defined as the size of a smallest edge-cut of odd size. A 6p-edge-connected graph
must be odd-(6p+1)-edge-connected, but not vice versa. Tutte’s 3-Flow Conjecturewas originally proposed for odd-5-edge-
connected graphs (see [1]). Lovász, Thomassen,Wu and Zhang [14] proved the following result formod (2p+1)-orientations
concerning odd-edge-connectivity, which strengths their theorem on modulo orientations.

Theorem 3.1 (Lovász et al. [14]). Every odd-(6p + 1)-edge-connected graph admits a mod (2p + 1)-orientation.

The main result of this section is Theorem 3.2. For the class of graphs with independence number at most 2, Theorem 3.2
improves Theorem 3.1 for p = 2 and verifies Conjecture 1.2 for those values.

Theorem 3.2. Every odd-9-edge-connected graph G of order at least 21 and with α(G) ≤ 2 has a mod 5-orientation.

We need a few more tools for the proof of Theorem 3.2.

Theorem 3.3 (Hakimi [2]). Let G be a graph and ℓ : V (G) ↦→ Z be a function such that
∑

v∈V (G)ℓ(v) = 0 and ℓ(v) ≡

dG(v) (mod 2), ∀v ∈ V (G). Then the following are equivalent.
(i) G has an orientation D such that d+

D (v) − d−

D (v) = ℓ(v), ∀v ∈ V (G).
(ii) |

∑
v∈Sℓ(v)| ≤ |∂G(S)|, ∀S ⊂ V (G).

Let u1v and u2v be two distinct edges in G. We define G[v,u1u2] to be the graph obtained from G by deleting the edges
u1v, u2v and adding a new edge u1u2, which is called the lifting operation (see [16,14]). The following lemma of Zhang [22]
shows that the odd-edge-connectivity is preserved under certain lifting operation.

Lemma 3.4 (Zhang [22]). Let G be a graph with odd edge-connectivity k. Assume there is a vertex v ∈ V (G) with d(v) ̸= k and
d(v) ̸= 2. Then there exists a pair of edges u1v, u2v in E(v) such that G[v,u1u2], the graph obtained from G by lifting u1v, u2v,
remains odd edge-connectivity k.

Lemma 3.5. Let J0, J1 and J2 be the graphs depicted in Fig. 1. Each of the following holds.
(i) J0 is strongly Z5-connected.
(ii) If G′ is a ⟨SZ5⟩-reduced graph on 3 vertices, then |E(G′)| ≤ 7, where |E(G′)| = 7 if and only if G′ is isomorphic to either J1 or
J2.

Proof. Proof of (i). Let b ∈ Z(J0,Z5). If b(v1) ̸= 0, lift two edges v1v2, v1v3 to obtain the graph G[v1,v2v3]. Since |[v1,

{v2, v3}]G[v1,v2v3]
| = 3 and b(v1) ̸= 0, we can modify the boundary b(v1) with the three edges in [v1, {v2, v3}]G[v1,v2v3]

.
Specifically, orient 1, 3, 0, 2 edges towards v1 when b(v1) = 1, 2, 3, 4, respectively. As |[v2, v3]G[v1,v2v3]

| = 4 and by
Lemma 2.1(iii), we can also modify the boundaries b(v2), b(v3) with those four edges. By symmetry, we assume b(v1) =

b(v2) = 0, then b(v3) = 0 since b ∈ Z(J0,Z5). Orient all the edges in E(v1) towards v1 and orient all the edges in
E(v2) from v2 to obtain an orientation D of J0. Then D is a mod 5-orientation of G, which agrees with the boundary
b(v1) = b(v2) = b(v3) = 0. Therefore, (i) must hold.

Proof of (ii). Set b1(v1) = b1(v2) = 3 and b1(v3) = 4. Then b1 ∈ Z(J1,Z5). It is routine to check that there is no orientation
agreeing with the boundary b1 in J1. Set b2(v1) = b2(v2) = 4 and b2(v3) = 2. Then b2 ∈ Z(J2,Z5). It is easy to see that
there is no orientation agreeing with the boundary b2 in J2. Notice that J1 and J2 are the only two nonisomorphic graphs on 3
vertices and 7 edges with edgemultiplicity at most 3. Now, Lemma 3.5 follows by Lemma 2.1(ii) and the fact that J0 ∈ ⟨SZ5⟩,
J1, J2 ̸∈ ⟨SZ5⟩. □

Lemma 3.6. Let G be an odd-9-edge-connected graph of order n ≥ 2. If G contains a subgraph isomorphic to Kn−1, then G admits
a mod 5-orientation.
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Fig. 1. Graphs in Lemma 3.5, where J0 ∈ ⟨SZ5⟩ and J1, J2 ̸∈ ⟨SZ5⟩.

Proof. It is straightforward to verify the statement when n = 2 and n ≥ 10 by Lemma 2.1(iii)(iv). Let G be a counterexample
with |V (G)| + |E(G)| minimized. The minimality of G implies that G is ⟨SZ5⟩-reduced. Let x be a vertex of G such that
G − x contains a subgraph isomorphic to Kn−1 whose vertex set is denoted by {y1, . . . , yn−1}. We may further assume
|[x, yi]G| ≥ |[x, yi+1]G|, ∀i ∈ [n − 2]. If G contains an even degree vertex, say v, then, by Lemma 3.4, there exist dG(v)

2 pairs
of edges incident with v such that lifting them results a graph, which contains a subgraph isomorphic to Kn−2, is still odd-9-
edge-connected and has a mod 5-orientation, a contradiction. This implies every vertex has an odd degree, δ(G) ≥ 9 and n
is even. Moreover, again by Lemma 3.4 and the minimality of |V (G)| + |E(G)|, we have dG(x) = 9.

If n = 4, then |E(G)| ≥ 18. Since |[u, v]G| ≤ 3 for any u, v ∈ V (G) by Lemma 2.1(iii), we have |E(G)| = 18, and this, in
addition, implies that G is isomorphic to 3K4. By Lemma 3.5, 3K3 ∈ ⟨SZ5⟩, and so G ∼= 3K4 is not ⟨SZ5⟩-reduced, contrary to
the assumption that G is ⟨SZ5⟩-reduced. Hence we assume that n > 4.

As every vertex of G has an odd degree, we must have n ≥ 6. The following observations, stated as Claims 1 and 2, follow
from Theorem 3.3 and Lemma 3.5.

Claim 1. Let ℓ : V (G) ↦→ {5, −5} be a function such that
∑

v∈V (G)ℓ(v) = 0. Then

there exists S ⊂ V (G) such that |

∑
v∈S

ℓ(v)| > |∂G(S)|. (6)

In fact, if (6) fails, then by Theorem 3.3, G has amod 5-orientation, contrary to the assumption that G is a counterexample.
As n ≤ 9, by the symmetry between S and V (G) − S, we may assume that there exists S ⊂ V (G) satisfying (6) with |S| ≤ 4
for any given ℓ.

Claim 2. Let S be a vertex subset of G. Each of the following holds.
(i) |∂G(S)| ≥

{
9 if |S| = 1,
12 if |S| = 2.

(ii) If |S| = 3, then |∂G(S)| ≥ 13. Moreover, if |∂G(S)| = 13, then dG(s) = 9, ∀s ∈ S, and G[S] ∈ {J1, J2} (see Fig. 1).
(iii) If n = 8 and |S| = 4, then |∂G(S)| ≥ 12 since G contains Kn−1.

When n = 6, denote X = {x, y4, y5} and Y = {y1, y2, y3}. As dG(x) = 9, we have |[x, y5]G| ≤ 1 and |[x, y4]G| ≤ 2. These,
together with |[y4, y5]G| ≤ 3, imply that

|[X, Y ]G| = dG(x) + dG(y4) + dG(y5) − 2(|[x, y4]| + |[x, y5]| + |[y4, y5]|)

≥ 21 − 2(2 + 1 + 3) = 15. (7)

Set ℓ(x) = ℓ(y4) = ℓ(y5) = 5 and ℓ(y1) = ℓ(y2) = ℓ(y3) = −5. We will obtain a contradiction by showing that ℓ violates
Claim 1. Choose an S ⊂ V (G) satisfying (6) with |S| minimized. Then |S| ≤ 3. By Claim 2(i), |S| ̸= 1, 2, and so |S| = 3. Thus
|
∑

v∈Sℓ(v)| ∈ {5, 15}. By Claim 2, |
∑

v∈Sℓ(v)| = 15 implying S ∈ {X, Y }, contrary to (7).
Therefore, we assume n = 8 in the following. Since dG(x) = 9 and |[x, yi]G| ≥ |[x, yi+1]G|, ∀i ∈ [7], we have

|[x, y7]G| ≤ |[x, y6]G| ≤ |[x, y5]G| ≤ 1, (8)

and

|[x, {y5, y6, y7}]| ≤ |[x, {y4, y6, y7}]| ≤ 3. (9)

Let X1 = {x, y5, y6, y7}, Y1 = {y1, y2, y3, y4}, X2 = {x, y4, y6, y7}, and Y2 = {y1, y2, y3, y5}. Define two functions ℓ1 and ℓ2
to be as follows.

ℓ1(v) =

{
5, if v ∈ X1;

−5, if v ∈ Y1.
and ℓ2(v) =

{
5, if v ∈ X2;

−5, if v ∈ Y2.

We are to show that either ℓ1 or ℓ2 violates Claim 1, leading to a contradiction.
For i = 1, 2, choose Si ⊂ V (G) satisfying (6) with |Si| minimized. By Claim 2(i), we have 3 ≤ |Si| ≤ 4.
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Claim 3. If |Si| = 3, then |∂G(Si)| = 13 and Si = Xi \ {x}.

As |Si| = 3, |
∑

v∈Si
ℓi(v)| ∈ {5, 15}. By (6) and Claim 2(ii), we must have 15 = |

∑
v∈Si

ℓi(v)| > |∂G(Si)| = 13. Thus Si ⊂ Xi
or Si ⊂ Yi. Moreover, G[Si] is isomorphic to J1 or J2 as |∂G(Si)| = 13 and by Claim 2(ii).

If x ∈ Si, then by Claim 2(ii), Si ⊂ Xi and |[x, Si \ {x}]| ≥ 4 as G[Si] is isomorphic to J1 or J2, contradicting to (8). If
Si ⊂ Yi, then we have 13 = |∂G(Si)| = |[x, Si]G| + |[Si, V (G) \ (Si ∪ {x})]G| ≥ |[x, Si]G| + 12. Thus |[x, Si]G| ≤ 1, and
so |[x, {y4, y5, y6, y7}]G| = 0. Denote {yt} = Y \ Si. Then |[x, yt ]G| ≥ 9 − |[x, Si]G| − |[x, {y4, y5, y6, y7}]G| ≥ 8. So, by
Lemma 2.1(iii), G is not ⟨SZ5⟩-reduced, a contradiction to the assumption on G. Therefore, we conclude that Si = Xi \ {x} if
|Si| = 3.

Claim 4. If |Si| = 3, then |S3−i| ̸∈ {3, 4}.

Assume |S1| = |S2| = 3 first. We claim that there exists s ∈ S1 ∪ S2 = {y4, y5, y6, y7} such that dG[S1∪S2](s) ≥ 7. If one
of G[S1], G[S2] is isomorphic to J2, it is routine to verify that the vertex s corresponding to v3 in J2 has degree at least 7 in
G[S1 ∪ S2]. Otherwise, we have G[S1] ∼= G[S2] ∼= J1 by Claim 2(ii), and so one of the vertices y6, y7 has degree at least 7 in
G[S1 ∪ S2]. Since dG[S1∪S2](s) ≥ 7, it follows by |[s, {y1, y2, y3}]| ≥ 3 that dG(s) ≥ 10, contradicting to dG(s) = 9 by Claim 2(ii).

We assume |Si| = 3 and |S3−i| = 4. By Claim 3, we have y6−i ∈ Si ⊂ Xi, and it follows by Claim 2(ii) and Claim 3 that

|[y6−i, {y6, y7}]| ≥ 4. (10)

Since |S3−i| = 4 and by Claim 2(iii), we have 20 > |∂G(S3−i)| = |[X3−i, Y3−i]| from (6). However, it follows from (9), (10) and
y6−i ∈ Xi that

|[X3−i, Y3−i]G| = dG(x) − |[x, {y3+i, y6, y7}]G| + |[{y3+i, y6, y7}, Y3−i]G|

≥ 9 − 3 + 10 + |[y6−i, {y6, y7}]G|

≥ 20 = |

∑
v∈S3−i

ℓ3−i(v)|,

a contradiction to (6). Hence Claim 4 holds.

The final step. By Claim 4, we may assume that |S1| = |S2| = 4. Thus, for i ∈ {1, 2}, 20 = |
∑

v∈Si
ℓi(v)| > |∂G(Si)| = |[Xi, Yi]|

by (6) and Claim 2(iii). Then |∂G(Si)| = |[Xi, Yi]| ≤ 18, since |Xi| is even. However, it follows from (8) and (9) that

36 ≥ |[X1, Y1]G| + |[X2, Y2]G|

= 2dG(x) − |[x, {y4, y6, y7}]G| − |[x, {y5, y6, y7}]G|
+ 2|[{y6, y7}, {y1, y2, y3}]G| + (dG(y4) − |[x, y4]G|) + (dG(y5) − |[x, y5]G|)

≥ 18 − 3 − 3 + 12 + 6 + 8 = 38,

a contradiction. The proof is completed. □

Proof of Theorem 3.2. Let G be an odd-9-edge-connected graph with α(G) ≤ 2 and G′ be the ⟨SZ5⟩-reduction of G. We shall
show that |V (G′)| ≤ 9 and G′ contains a subgraph isomorphic to K|V (G′)|−1. Then G′ admits a mod 5-orientation by Lemma 3.6,
and so Theorem 3.2 follows from Lemma 2.1(v).

Denote G1 to be the underline simple graph of G. Since |V (G1)| ≥ 21, G1 is not ⟨SZ5⟩-reduced by Corollary 2.4, and
hence ξ (G1) ̸= 0. By Lemma 2.5, we have 1 ≤ ξ (G1) ≤ 2. If ξ (G1) = 2, again by Lemma 2.5, G′

1, the ⟨SZ5⟩-reduction
of G1, is a graph with at most two vertices, so does G′. Notice that |V (G′)| ≤ |V (G′

1)|. Assume ξ (G1) = 1 and let H1 be
the corresponding nontrivial maximal ⟨SZ5⟩-subgraphs of G1. Clearly, |V (H1)| ≥ 9 by Lemma 2.1(iv). Let H be a nontrivial
maximal ⟨SZ5⟩-subgraphs of G with |V (H)| maximized. As G[V (H1)] ∈ ⟨SZ5⟩, we have |V (H)| ≥ |V (H1)| ≥ 9. We claim that
α(G − V (H)) = 1. In fact, suppose that u, v are two non-adjacent vertices in G − V (H). Then, by Lemma 2.1(ii)(iii), we have
|[u, V (H)]| ≤ 3 and |[v, V (H)]| ≤ 3. Since |V (H)| ≥ 9, there exists w ∈ V (H) such that {w, u, v} forms an independent set
of size 3, a contradiction to α(G) ≤ 2. Hence α(G − V (H)) = 1. Now, by Lemma 2.1(iv), the ⟨SZ5⟩-reduction of G − V (H) has
size at most 8 and independence number 1. Hence G′ has order at most 9 and contains a subgraph isomorphic to K|V (G′)|−1.
Therefore, Theorem 3.2 follows from Lemma 2.1(v) and Lemma 3.6. □

Note that Theorem 1.8 follows from Theorems 3.2 and 1.6.

4. Concluding remarks

As already mentioned in Section 1, we have proved that there are finitely many ⟨SZ2p+1⟩-reduced graphs, which are
contraction obstacles for admitting amod (2p+1)-orientation, in the family of graphs with bounded independence number.
However, there are infinitely many (4p+1)-edge-connected ⟨SZ2p+1⟩-reduced graphs without mod (2p+1)-orientation for
every p ≥ 5 as proved in [3].We ask ameta question that what kind of graph familymay have only finitelymany contraction
obstacles for admitting a mod (2p+1)-orientation. Some dense conditions or degree conditions may work, and certain edge
connectivity condition may not work well. The corresponding question on planar graphs is of particular interest, which is
open for every p ≥ 2.
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Problem 4.1. For each integer p ≥ 2, are there finite many (4p + 1)-edge-connected ⟨SZ2p+1⟩-reduced planar graphs?

Problem 4.1 can be viewed as a relaxed version of Jaeger’s conjecture on planar graphs, and it can be also generalized to
graphs embedded on surface.

Problem 4.2. For each positive integer p, are there finite many (4p + 1)-edge-connected ⟨SZ2p+1⟩-reduced graphs for the
family of graphs embedded on a fixed surface?
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