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It was conjectured by Jaeger that every 4p-edge-connected 
graph admits a modulo (2p + 1)-orientation (and, therefore, 
admits a nowhere-zero circular (2 + 1

p
)-flow). This conjec-

ture was partially proved by Lovász et al. (2013) [7] for 
6p-edge-connected graphs. In this paper, infinite families of 
counterexamples to Jaeger’s conjecture are presented. For 
p ≥ 3, there are 4p-edge-connected graphs not admitting 
modulo (2p +1)-orientation; for p ≥ 5, there are (4p +1)-edge-
connected graphs not admitting modulo (2p + 1)-orientation.
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Conjecture 1.1 (Jaeger’s Circular Flow Conjecture). Every 4p-edge-connected graph ad-
mits a modulo (2p + 1)-orientation.

In [5], Kochol also suggested a seemly weaker conjecture.

Conjecture 1.2. Every (4p +1)-edge-connected graph admits a modulo (2p +1)-orientation.

For p = 1, Kochol [5] showed that both Conjecture 1.1 and Conjecture 1.2 are equiva-
lent to the 3-Flow Conjecture of Tutte. In the case of p = 2, the truth of Conjecture 1.2
(and Conjecture 1.1) would imply Tutte’s 5-Flow Conjecture (see [4,5]).

Resolving the weak 3-flow conjecture and the weak circular flow conjecture, Thomassen 
[9] showed that such orientation exists under the edge connectivity 8 (p = 1) and 
2(2p + 1)2 + 2p + 1 (p ≥ 2), respectively. Lovász et al. [7] further proved that every 
6p-edge-connected graph admits a modulo (2p + 1)-orientation.

In this paper, we construct a 4p-edge-connected graph without modulo (2p +1)-orien-
tation for every p ≥ 3. Furthermore, for every p ≥ 5, we also construct a (4p + 1)-edge-
connected graph without modulo (2p + 1)-orientation. This disproves Jaeger’s Circular 
Flow Conjecture (Conjecture 1.1) for every p ≥ 3 and Conjecture 1.2 for every p ≥ 5.

Theorem 1.3. For every integer p ≥ 3, there exists a 4p-edge-connected graph admitting 
no modulo (2p + 1)-orientation.

Theorem 1.4. For every integer p ≥ 5, there exists a (4p + 1)-edge-connected graph ad-
mitting no modulo (2p + 1)-orientation.

In Section 5, graphs constructed in Theorems 1.3 and 1.4 are further extended to 
infinite families of counterexamples to Conjectures 1.1 and 1.2.

We shall present the construction of Theorem 1.3 first, which is simpler to analyze. 
The construction in Theorem 1.4 is based on the same idea with some more elaborate 
modification.

2. Preliminary

Graphs in this paper are finite and may contain parallel edges. In an undirected 
graph G, for vertex subsets U, W ⊆ V (G), let [U, W ]G = {uw ∈ E(G) : u ∈ U, w ∈ W}
and δG(U) = [U, V (G) − U ]G. For v, w ∈ V (G), define EG(v) = [{v}, V (G) − {v}]G
and EG(v, w) = [{v}, {w}]G, respectively. An edge-cut X of G is called trivial if X =
EG(v) for some v ∈ V (G), and nontrivial otherwise. Let D = D(G) be an orientation 
of G. If A ⊂ V (G), we define E+

D(A) (E−
D(A), respectively) to be the set of all directed 

edges with initial vertex (terminal vertex, respectively) in A and terminal vertex (initial 
vertex, respectively) in V (G) −A. When A = {v}, We simply use E+

D(v) and E−
D(v) for 

convenience. For vertex subsets U, W ⊆ V (G), we denote [U, W ]D = E+
D(U) ∩ E−

D(W ). 
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In addition, dG(v) = |EG(v)|, d−D(v) = |E−
D(v)| and d+

D(v) = |E+
D(v)| are known as the 

degree, indegree and outdegree of a vertrex v, respectively.
A graph G admits a modulo (2p + 1)-orientation if it has an orientation D such that 

d+
D(v) − d−D(v) ≡ 0 (mod 2p + 1) for each v ∈ V (G). It is observed by Jaeger [4] that 

a graph admits a nowhere-zero circular (2 + 1
p )-flow if and only if it admits a modulo 

(2p + 1)-orientation. In particular, a graph has a nowhere-zero 3-flow if and only if it 
admits a modulo 3-orientation. The readers are referred to [10] for a comprehensive 
introduction on nowhere-zero flows.

Observation 2.1. Let F = (2p −1)K2 be the graph consisting of two vertices u, v and 2p −1
parallel edges between u and v, and, let t ∈ Z2p+1. The graph F admits an orientation 
D such that

d+
D(u) − d−D(u) ≡ t (mod 2p + 1)

if and only if t �= 0.

Proof. It is obvious that there is no such orientation for t = 0. The existence of such an 
orientation is essentially a solution of the following equations

{
d+
D(u) − d−D(u) ≡ t (mod 2p + 1),

d+
D(u) + d−D(u) = 2p− 1.

For t ∈ {1, · · · , 2p}, an orientation D of F such that

d+
D(u) = |E+

D(u)| =
{

p + t−1
2 if t is odd,

t
2 − 1 if t is even,

and d−D(u) = |E−
D(u)| = (2p − 1) − |E+

D(u)| would be sufficient. �
Our construction relies on the following 2-sum operation, which generalizes the “edge 

superposition” method in [6]. In fact, the case p = 1 of Lemma 2.3 below coincides with 
Proposition 4.6 in [6] or Lemma 1 in [5].

Definition 2.2. Let H1 and H2 be two graphs with u1, v1 ∈ V (H1), u2, v2 ∈ V (H2) and 
|EH1(u1, v1)| ≥ 2p − 1. Define H = H1 ⊕2 H2, the 2-sum of H1 and H2, to be the graph 
obtained from H1 and H2 by deleting 2p − 1 parallel edges between u1 and v1 in H1, 
and then identifying u1 and u2 to be a new vertex u, and identifying v1 and v2 to be a 
new vertex v (see Fig. 1).

Lemma 2.3. Let H = H1 ⊕2 H2 be a 2-sum of H1 and H2 used in Definition 2.2. If 
neither H1 nor H2 admits a modulo (2p +1)-orientation, then H = H1 ⊕2 H2 admits no 
modulo (2p + 1)-orientation.
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Fig. 1. The 2-sum of H1 and H2.

Proof. Let u, v ∈ V (H), ui, vi ∈ V (Hi) (i = 1, 2) be the vertices described in Defini-
tion 2.2, and let F be the set of (2p − 1) parallel edges of H1 deleted in the 2-sum.

Suppose that H admits a modulo (2p +1)-orientation D. Let D2 be the restriction of 
D on H2 and D1 be the restriction of D on H1 − F . Let βi(ui) = d+

Di
(ui) − d−Di

(ui) and 
βi(vi) = d+

Di
(vi) − d−Di

(vi), for each i = 1, 2. It is obvious that

β1(u1) ≡ −β1(v1) ≡ −β2(u2) ≡ β2(v2) (mod 2p + 1).

Since H2 does not admit a modulo (2p + 1)-orientation, β2(u2) ≡ −β2(v2) �≡ 0
(mod 2p + 1). By Observation 2.1, the edge subset F can be properly oriented so that 
the resulting orientation (together with D1) is a modulo (2p +1)-orientation of H1. This 
is a contradiction. �
3. The constructions of counterexamples – proof of Theorem 1.3

3.1. Step 1 of the construction

It is known that the complete graph K4p admits no modulo (2p + 1)-orientation. Our 
first construction starts from it.

Construction 1. Let p ≥ 3 be an integer, and {v1, · · · , v4p} be the vertex set of the 
complete graph K4p.

(i) Construct a graph G1 from the complete graph K4p by adding an additional set 
T of edges such that V (T ) = {v1, · · · , v3(p−1)} and each component of the edge-induced 
subgraph G1[T ] is a triangle (see G1 in Fig. 2).

(ii) Construct a graph G2 from G1 by adding two new vertices z1 and z2, adding one 
edge z1z2, adding (p − 2) parallel edges connecting v4p and zj for j = 1, 2, and adding 
one edge vizj for each 3p − 2 ≤ i ≤ 4p − 1 and j = 1, 2 (see G2 in Fig. 2).

Lemma 3.1. (i) G1 admits no modulo (2p + 1)-orientation.
(ii) G2 admits no modulo (2p + 1)-orientation. Moreover, G2 contains exactly two edge-
cuts, E(z1), E(z2), of sizes 2p + 1, and all the other edge-cuts are of sizes at least 4p.
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Fig. 2. The graphs G1 and G2.

Proof. (i) Suppose to the contrary that G1 admits a modulo (2p + 1)-orientation D. 
Notice that d+

D(v) − d−D(v) ∈ {±(2p + 1)} for each vertex v ∈ V (G1). Denote V + = {x ∈
V (G1) : d+

D(x) − d−D(x) = 2p + 1} and V − = {x ∈ V (G1) : d+
D(x) − d−D(x) = −2p − 1}, 

respectively. Clearly, |V +| = |V −| = 2p. Since the edge-induced subgraph G1[T ] consists 
of (p − 1) vertex-disjoint triangles, each of which may contribute at most two edges in 
the edge-cut [V +, V −]G1 , we have

|[V +, V −]G1 | ≤ |V +| · |V −| + 2(p− 1) = 4p2 + 2p− 2 < 4p2 + 2p.

This contradicts to the fact that

4p2 + 2p = |V +| · (2p + 1) =
∑

v∈V +

(d+
D(v) − d−D(v)) = |[V +, V −]D| − |[V −, V +]D|

≤ |[V +, V −]G1 |.

(ii) The proof is by contradiction. Suppose that G2 admits a modulo (2p + 1)-orien-
tation D. Without loss of generality, assume the edge z1z2 is oriented from z1 to z2 under 
the orientation D. Thus, |E+

D(z1)| = |EG2(z1)| = 2p + 1 and |E−
D(z2)| = |EG2(z2)| =

2p + 1. Furthermore, since |EG2(z1, vi)| = |EG2(z2, vi)| for each 3p − 2 ≤ i ≤ 4p, the 
restriction of D on E(G2) −E(G1) is a modulo (2p + 1)-orientation, and, therefore, the 
restriction of D on E(G1) is also a modulo (2p +1)-orientation. This contradicts (i). �
3.2. Step 2 of the construction

Construction 2. Denote by C4p+1 the cycle of length 4p + 1 with V (C4p+1) = {ci : i ∈
Z4p+1} and E(C4p+1) = {cici+1 : i ∈ Z4p+1}. Let W = (2p − 1)C4p+1 ·K1 be the graph 
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Fig. 3. The graph W for p = 3.

obtained from C4p+1 by replacing each edge cici+1 with 2p − 1 parallel edges, and then 
adding a center vertex w joining each vertex ci in the cycle (see Fig. 3).

We remark that the graph W is the dual of an example discovered by DeVos in [2]
(also see [1]) on the circular coloring of planar graphs. We include a proof of the following 
lemma for the purpose of self-completeness.

Lemma 3.2. The graph W admits no modulo (2p +1)-orientation. Moreover, W is (4p −1)-
edge-connected and every (4p − 1)-edge-cut is trivial.

Proof. Suppose that W admits a modulo (2p + 1)-orientation D. Notice that, for each 
vertex ci, d+

D(ci) − d−D(ci) = 2p + 1 or = −(2p + 1). Furthermore, since the cycle C4p+1

is of odd length, there exists two consecutive vertices ci, ci+1 in the cycle with d+
D(ci) −

d−D(ci) = d+
D(ci+1) − d−D(ci+1) (∈ {±(2p + 1)}). However,

4p + 2 = |(d+
D(ci) − d−D(ci)) + (d+

D(ci+1) − d−D(ci+1))|

= ||E+
D({ci, ci+1})| − |E−

D({ci, ci+1})||

≤ |δW ({ci, ci+1})| = 4p < 4p + 2,

a contradiction. �
3.3. The final step of the construction

Now, we are ready to obtain our final construction via the 2-sum operations of W and 
copies of G2.
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Fig. 4. The graph M for p = 3.

Construction 3. For each ci, ci+1 (i ∈ Z4p+1) in W and z1, z2 in a copy of G2, apply 
the 2-sum operation described in Definition 2.2. Denote M to be the final graph obtained 
after these 4p + 1 2-sum operations (see Fig. 4).

Lemma 3.3. The graph M is 4p-edge-connected and admits no modulo (2p +1)-orientation.

Proof. It is straightforward to check M is 4p-edge-connected. Specifically, every vertex 
in M is of degree at least 4p + 1. If a nontrivial edge-cut Q separates z1 and z2 in a 
copy of G2, then Q must separate at least two copies of G2 since it intersects the cycle 
C4p+1 even number of times. In each copy, at least 2p +1 edges is contained in the cut Q, 
resulting that Q is of size at least 4p + 2. If a nontrivial edge-cut Q does not separate z1

and z2 in any copy of G2, then Q contains an edge-cut Q′ �= EG2(z1), EG2(z2) in a copy 
of G2, which is of size at least 4p. Therefore, M is 4p-edge-connected.

By Lemmas 3.1 and 3.2 and applying Lemma 2.3 consecutively, M admits no modulo 
(2p +1)-orientation. This completes the proof of Lemma 3.3, as well as Theorem 1.3. �
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Fig. 5. The graph G3.

4. The constructions of counterexamples – proof of Theorem 1.4

Note that each 4p-edge-cut in M is of the form δM (G1) for some copy of G1. In this 
section, the Construction 1 is refined for constructing a new graph G3, which eliminates 
these 4p-edge-cuts. However, the lower bound of p is unavoidably raised to 5 in the new 
construction.

Construction 4. Let p ≥ 5 be an integer, and {v1, · · · , v4p} be the vertex set of the 
complete graph K4p. Let q = �2p−1

3 �.
(i) Construct a graph G′

1 from the complete graph K4p by adding an additional set 
T ′ of edges such that V (T ′) = {v1, · · · , v3q} and each component of the edge-induced 
subgraph G′

1[T ′] is a triangle.
(ii) Construct a graph G′

2 from G′
1 by adding two new vertices z′1 and z′2, adding one 

edge z′1z
′
2, adding (3q − 2p + 2) parallel edges connecting v4p−1 and z′j for j = 1, 2, and 

adding one edge viz′j for each 3q + 1 ≤ i ≤ 4p − 2 and j = 1, 2.
(iii) Let G1

2, G
2
2, G

3
2 be three copies of G′

2. Construct a graph G3 from these three 
copies of G′

2 by identifying the corresponding z′1 in G1
2 and G2

2 to be a new vertex y1, 
identifying the corresponding z′2 in G2

2 and G3
2 to be a new vertex y2, and adding a triangle 

connecting the corresponding v4p’s of G1
2, G2

2 and G3
2. Relabel the corresponding v4p’s of 

G1
2, G2

2 and G3
2 as w1, w2, w3, and relabel the remaining two degree 2p + 1 vertices as 

x1, x2, respectively (see Fig. 5).

Lemma 4.1. (i) Neither G′
1 nor G′

2 admit a modulo (2p + 1)-orientation.
(ii) G3 admits no modulo (2p +1)-orientation. In addition, G3 is (2p +1)-edge-connected, 
and each edge-cut that does not separate {x1, x2} is of size at least 4p + 1.

Proof. (i) The proof of (i) is analogous to that of Lemma 3.1 (i). Suppose that D is a 
modulo (2p + 1)-orientation of G′

1. With a similar setting as in Lemma 3.1, we have

|[V +, V −]G′
1
| ≤ |V +| · |V −| + 2�2p− 1

3 � < 4p2 + 2p.

This contradicts to the fact that
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4p2 + 2p = |V +| · (2p + 1) =
∑

v∈V +

(d+
D(v) − d−D(v)) = |[V +, V −]D| − |[V −, V +]D|

≤ |[V +, V −]G′
1
|.

The argument for G′
2 is the same as G2. Note that dG′

2
(z′1) = dG′

2
(z′2) = 2p + 1.

(ii) The proof is by contradiction. Suppose that G3 admits a modulo (2p + 1)-orien-
tation D. Let Di be the restriction of D on Gi

2, for i = 1, 2, 3.
We first claim that, under the orientation D, the edges w1w2, w1w3 are either both 

oriented away from w1 or both oriented towards w1. If not, since {w1w2, w1w3} is oriented 
with opposite directions at w1, we have, under the orientation D1 of G1

2,

d+
D1

(w1) − d−D1
(w1) ≡ 0 (mod 2p + 1).

Then it follows that

d+
D1

(y1) − d−D1
(y1) ≡ −

∑
v∈V (G1

2)\{y1}
(d+

D1
(v) − d−D1

(v)) ≡ 0 (mod 2p + 1).

This implies D1 is a modulo (2p + 1)-orientation of G1
2, yielding a contradiction to (i). 

Similar conclusion holds for w3.

Without loss of generality, we assume the edges w1w2, w1w3 are both oriented away 
from w1 in the orientation D. Symmetrically, both edges w1w3 and w2w3 are oriented 
towards w3 in D.

Since EG2
2
(y1) ∪ {w1w2, w1w3} is an edge-cut of G3, it follows from the orientations 

of w1w2 and w1w3 that

d+
D2

(y1) − d−D2
(y1) + 2 ≡ 0 (mod 2p + 1),

and symmetrically,

d+
D2

(y2) − d−D2
(y2) − 2 ≡ 0 (mod 2p + 1).

Since dG2
2
(y1) = dG2

2
(y2) = 2p + 1 in G2

2, we have

d+
D2

(y1) − d−D2
(y1) = −(d+

D2
(y2) − d−D2

(y2)) = 2p− 1. (1)

Let V + = {x ∈ V (G2
2) : d+

D2
(x) − d−D2

(x) > 0} and V − = {x ∈ V (G2
2) : d+

D2
(x) −

d−D2
(x) < 0}. Then {V +, V −} is a partition of V (G2

2) as each vertex of G2
2 is of odd 

degree. Clearly, d+
D2

(w2) −d−D2
(w2) ∈ {±(2p +1)} by the orientations of w1w2 and w2w3.

Since d+
D2

(v4p−1) − d−D2
(v4p−1) ≡ 0 (mod 2p + 1) and

dG2
2
(v4p−1) = 4p− 1 + 2(3q − 2p + 2) = 6�2p− 1

3 � + 3 < 3(2p + 1),

we have d+
D (v4p−1) − d−D (v4p−1) ∈ {±(2p + 1)} as well.
2 2
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So, we conclude that

d+
D2

(x) − d−D2
(x) = 2p + 1, for each vertex x ∈ V + \ {y1}, (2)

d+
D2

(x) − d−D2
(x) = −2p− 1, for each vertex x ∈ V − \ {y2}, (3)

and

|V +| = |V −| = 2p + 1. (4)

Let S be the set of edge-disjoint 2-paths of G2
2 joining y1 and y2, where |S| = 2p. 

Note that each 2-path in S contributes one edge in the edge-cut [V +, V −]G2
2
, and G2

2[T ′]
consists of q triangles, each of which may contribute at most two edges in the edge-cut 
[V +, V −]G2

2
. Thus, we have

|[V +, V −]G2
2
| ≤ (|V +| − 1)(|V −| − 1) + 2q + |S| + |E(y1, y2)|

= (2p)2 + 2�2p− 1
3 � + 2p + 1

< 4p2 + 4p− 1. (by p ≥ 5)

However, by Eq. (1), (2), (3) and (4), we obtain a contradiction as follows.

4p2 + 4p− 1 = (2p + 1)|V + \ {y1}| + 2p− 1 =
∑

x∈V +

(d+
D2

(x) − d−D2
(x)) ≤ |[V +, V −]G2

2
|.

This proves (ii). �
The next construction is similar to Construction 3, except that we replace copies of 

G2 with copies of G3.

Construction 5. Construct a graph M ′ as follows: Take 4p + 1 copies of G3, then for 
each ci, ci+1 (i ∈ Z4p+1) in W and x1, x2 in a copy of G3, apply the 2-sum operation 
described in Definition 2.2.

The following lemma is a mimic of Lemma 3.3, which eliminates 4p-edge-cuts.

Lemma 4.2. For every p ≥ 5, the graph M ′ is (4p + 1)-edge-connected and admits no 
modulo (2p + 1)-orientation.

Proof. M ′ admits no modulo (2p + 1)-orientation for the same reason as in Lemma 3.3. 
Similar argument applies to check that M ′ is (4p + 1)-edge-connected. Notice that, by 
Lemma 4.1, each edge-cut in G3 that does not separate {x1, x2} is of size at least 4p +1. 
This proves Lemma 4.2, as well as Theorem 1.4. �



M. Han et al. / Journal of Combinatorial Theory, Series B 131 (2018) 1–11 11
5. Remarks

The counterexamples constructed in Theorems 1.3 and 1.4 can be easily extended to 
some infinite families of counterexamples. One of the most straightforward methods is to 
replace some vertices of the graphs M and M ′ by copies of some highly connected graphs 
(such as, complete graphs of large orders), and see [6] for a similar “vertex superposition” 
method. Another method is to replace the cycle C4p+1 in Construction 2 with a longer 
odd cycle. We may also apply the 2-sum operations on copies of W , and then modify 
the final construction. In addition, for the final construction, it is not necessary to apply 
the 2-sum operation for each ci, ci+1 (i ∈ Z4p+1) in W , as long as there is no vertex of 
degree 4p − 1 in the resulting graph, it produces a 4p-edge-connected graph (or (4p +1)-
edge-connected graph in Construction 5, respectively). Applying the splitting theorem 
of Mader [8] would yield a 4p-edge-connected (or (4p + 1)-edge-connected, for p ≥ 5, 
respectively) (4p + 1)-regular graph without modulo (2p + 1)-orientation as well. We 
leave all those details to interested readers.

The construction in this paper seems to suggest that the gap between 4p and edge 
connectivity for admitting modulo (2p + 1)-orientation may depend on p. Therefore, we 
propose the following new conjecture on modulo orientations, whose truth still implies 
the 3-Flow Conjecture and 5-Flow Conjecture of Tutte, as shown by Kochol [5] and 
Jaeger [4].

Conjecture 5.1. For every positive integer p, there exists a sufficiently small positive 
constant ε = ε(p) < 1

2 such that every �(4 + ε)p�-edge-connected graph admits a modulo 
(2p + 1)-orientation.

Theorem 1.4 indicates ε(p) > 1
p when p ≥ 5.
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