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Abstract
Given a zero-sum function 𝛽 ∶ 𝑉 (𝐺) → ℤ3 with∑
𝑣∈𝑉 (𝐺) 𝛽(𝑣) = 0, an orientation 𝐷 of 𝐺 with 𝑑+

𝐷
(𝑣) −

𝑑−
𝐷
(𝑣) = 𝛽(𝑣) in ℤ3 for every vertex 𝑣 ∈ 𝑉 (𝐺) is called

a 𝛽-orientation. A graph 𝐺 is ℤ3-connected if 𝐺 admits

a 𝛽-orientation for every zero-sum function 𝛽. Jaeger

et al. conjectured that every 5-edge-connected graph is

ℤ3-connected. A graph is ⟨ℤ3⟩-extendable at vertex 𝑣 if

any preorientation at 𝑣 can be extended to a 𝛽-orientation

of 𝐺 for any zero-sum function 𝛽. We observe that if

every 5-edge-connected essentially 6-edge-connected

graph is ⟨ℤ3⟩-extendable at any degree five vertex, then

the above-mentioned conjecture by Jaeger et al. holds as

well. Furthermore, applying the partial flow extension

method of Thomassen and of Lovász et al., we prove that

every graph with at least four edge-disjoint spanning trees

is ℤ3-connected. Consequently, every 5-edge-connected

essentially 23-edge-connected graph is ⟨ℤ3⟩-extendable at

any degree five vertex.
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1 INTRODUCTION

We consider finite graphs without loops, but with possible multiple edges, and follow [2] for undefined

terms and notation. As in [2], 𝜅′(𝐺) denotes the edge-connectivity of a graph 𝐺; and 𝑑+
𝐷
(𝑣), 𝑑−

𝐷
(𝑣)

denote the out-degree and the in-degree of a vertex in a digraph 𝐷, respectively. For an 𝑚 ∈ ℤ, let

ℤ𝑚 be the set of integers modulo 𝑚, as well as the (additive) cyclic group on 𝑚 elements. For vertex

subsets 𝑈,𝑊 ⊆ 𝑉 (𝐺), let [𝑈,𝑊 ]𝐺 = {𝑢𝑤 ∈ 𝐸(𝐺)|𝑢 ∈ 𝑈,𝑤 ∈ 𝑊 }; and for each 𝑣 ∈ 𝑉 (𝐺), define

𝐸𝐺(𝑣) = [{𝑣}, 𝑉 (𝐺) − {𝑣}]𝐺. The subscript𝐺may be omitted if𝐺 is understood from the context. An
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edge cut 𝑋 = [𝑆, 𝑉 (𝐺) − 𝑆] in a connected graph 𝐺 is essential if at least two components of 𝐺 −𝑋
are nontrivial. A graph is essentially 𝑘-edge-connected if it does not have an essential edge cut with

fewer than 𝑘 edges.

For an integer 𝑚 > 1, a graph 𝐺 admits a mod 𝑚-orientation if 𝐺 has an orientation 𝐷 such that at

every vertex 𝑣 ∈ 𝑉 (𝐺), 𝑑+
𝐷
(𝑣) − 𝑑−

𝐷
(𝑣) ≡ 0 (mod 𝑚). Let 𝑚 be the family of all graphs admitting a

mod 𝑚-orientation. Let 𝑘 ≥ 2 be an integer and 𝐺 be a graph with an orientation 𝐷 = 𝐷(𝐺). For any

vertex 𝑣 ∈ 𝑉 (𝐺), let𝐸+
𝐷
(𝑣) denote the set of all edges directed away from 𝑣, and let𝐸−

𝐷
(𝑣) denote the set

of all edges directed into 𝑣. A function 𝑓 ∶ 𝐸(𝐺) → {±1,±2,… ,±(𝑘 − 1)} is called a nowhere-zero
𝑘-flow if ∑

𝑒∈𝐸+
𝐷
(𝑣)
𝑓 (𝑒) −

∑
𝑒∈𝐸−

𝐷
(𝑣)
𝑓 (𝑒) = 0, for any vertex 𝑣 ∈ 𝑉 (𝐺).

The well-known 3-Flow Conjecture of Tutte is stated below.

Conjecture 1.1. (Tutte [25]) Every 4-edge-connected graph admits a nowhere-zero 3-flow.
Tutte [26] (see also Brylawski [3], Arrowsmith and Jaeger [1]) indicated that a graph 𝐺 has a

nowhere-zero 𝑘-flow if and only if 𝐺 has a nowhere-zero ℤ𝑘-flow. Moreover, a graph has a nowhere-

zero 3-flow if and only if 𝐺 has a mod 3-orientation (i.e. 𝐺 ∈ 3).

Jaeger et al. [11] introduced the notion of ℤ𝑘-connectedness as a generalization of nowhere-zero

flows. In this article, we mainly focus on ℤ3-connectedness of graphs. A function 𝛽 ∶ 𝑉 (𝐺) → ℤ3 is a

zero-sum function of 𝐺 if
∑
𝑣∈𝑉 (𝐺) 𝛽(𝑣) = 0 in ℤ3. Let 𝑍(𝐺,ℤ3) be the set of all zero-sum functions

of 𝐺. An orientation 𝐷 of 𝐺 with 𝑑+
𝐷
(𝑣) − 𝑑−

𝐷
(𝑣) = 𝛽(𝑣) in ℤ3 for every vertex 𝑣 ∈ 𝑉 (𝐺) is called a

𝛽-orientation. Note that a mod 3-orientation of 𝐺 is a 𝛽-orientation with 𝛽(𝑣) = 0 for every vertex

𝑣 ∈ 𝑉 (𝐺). A graph 𝐺 is ℤ3-connected if, for every 𝛽 ∈ 𝑍(𝐺,ℤ3), there is an orientation 𝐷 such that

𝑑+
𝐷
(𝑣) − 𝑑−

𝐷
(𝑣) ≡ 𝛽(𝑣) (mod 3) for every vertex 𝑣 ∈ 𝑉 (𝐺). The collection of all ℤ3-connected graphs

is denoted by ⟨ℤ3⟩. Jaeger et al. [11] proposed the following Conjecture.

Conjecture 1.2. (Jaeger et al. [11]) Every 5-edge-connected graph is ℤ3-connected.

A graph 𝐺 with 𝑧0 ∈ 𝑉 (𝐺) is 3-extendable at 𝑧0 if, for any pre-orientation 𝐷𝑧0 of 𝐸𝐺(𝑧0) with

𝑑+
𝐷𝑧0

(𝑧0) ≡ 𝑑−𝐷𝑧0
(𝑧0) (mod 3),𝐷𝑧0 can be extended to a mod 3-orientation𝐷 of𝐺. Kochol [12] showed

that Conjecture 1.2 implies Conjecture 1.1.

Theorem 1.3. (Kochol [12]) The following are equivalent.

(i) Every 4-edge-connected graph has a nowhere-zero 3-flow.
(ii) Every 5-edge-connected graph has a nowhere-zero 3-flow.

(iii) Every 5-edge-connected essentially 6-edge-connected graph is 3-extendable at every degree 5
vertex.

(iv) Every 4-edge-connected graph with each vertex of degree 4 or 5 is 3-extendable at every vertex.

A graph is called ⟨ℤ3⟩-extendable at 𝑧0, if, for any 𝛽 ∈ 𝑍(𝐺,ℤ3) and any preorientation 𝐷𝑧0 of

𝐸𝐺(𝑧0) with 𝑑+
𝐷𝑧0

(𝑧0) − 𝑑−𝐷𝑧0
(𝑧0) ≡ 𝛽(𝑧0) (mod 3),𝐷𝑧0 can be extended to a 𝛽-orientation𝐷 of 𝐺. In

the next section, we shall prove the following proposition on extendability at vertex 𝑧0.

Proposition 1.4. Let 𝐺 be a graph and 𝑧0 ∈ 𝑉 (𝐺).

(i) 𝐺 is ⟨ℤ3⟩-extendable at 𝑧0 if and only if 𝐺 − 𝑧0 is ℤ3-connected.
(ii) If 𝐺 is ⟨ℤ3⟩-extendable at 𝑧0, then 𝐺 is ℤ3-connected.
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Thomassen [23] and Lovász et al. [19] utilized partial flow extensions to obtain breakthroughs in

ℤ3-connectedness and modulo orientation problems. Lovász et al. [19,27] proved that every 6-edge-

connected graph is ℤ3-connected. In fact, they have proved a stronger result.

Theorem 1.5. (Lovász et al. [19] and Wu [27]) Every 6-edge-connected graph is ⟨ℤ3⟩-extendable at
any vertex of degree at most 7.

Analogous to Theorem 1.3(iii) of Kochol, it is natural to suggest the following strengthening of

Conjecture 1.2, which eliminates nontrivial 5-edge-cut, and whose truth would imply Conjecture 1.2,

as to be shown in Section 3 of this article.

Conjecture 1.6. Every 5-edge-connected essentially 6-edge-connected graph is ⟨ℤ3⟩-extendable at
any vertex of degree 5.

The main results of this article are the following.

Theorem 1.7. Every graph with 4 edge-disjoint spanning trees is ℤ3-connected.

Thomassen [23] resolved the weak 3-flow conjecture by showing high edge-connectivity (8-edge-

connected) guarantees the existence of nowhere-zero 3-flows. Analogously, a natural question is to

ask whether a higher essentially edge-connectivity ensures the existence of nowhere-zero 3-flows. It is

straightforward to check that the graph 𝐾+
3,𝑡 (𝑡 ≥ 4) admits no mod 3-orientation, where 𝐾+

3,𝑡 denotes

the graph obtained from complete bipartite graph 𝐾3,𝑡 by adding a new edge joining two vertices of

degree 𝑡. This indicates a 3-edge-connected graph with arbitrary high essentially edge-connectivity

may not admit a nowhere-zero 3-flow. The next theorem partially answers the question about existence

and shows that 5-edge-connectivity with certain high essentially edge-connectivity 23 is sufficient for

admitting a nowhere-zero 3-flow. This also approaches Theorem 1.3(iii) of Kochol, and provides some

supporting evidence to Conjecture 1.6.

Theorem 1.8. Each of the following holds.

(a) Every 5-edge-connected essentially 23-edge-connected graph is 3-extendable at any degree five
vertex.

(b) Every 5-edge-connected essentially 23-edge-connected graph is ⟨ℤ3⟩-extendable at any degree
five vertex.

Theorems 1.7 and 1.8 are immediate corollaries of a technical theorem, stated below as Theorem

1.9, which would be proved via utilizing a method of Thomassen [23] and Lovász et al. in [19].

Following Catlin [4], let𝐹 (𝐺, 𝑘) denote the minimum number of additional edges that must be added

to 𝐺 to result in a supergraph 𝐺′ of 𝐺 that has 𝑘 edge-disjoint spanning trees. In particular, 𝐺 has 𝑘

edge-disjoint spanning trees if and only if 𝐹 (𝐺, 𝑘) = 0. It is known ( [16,28]) that if𝐺 is ℤ3-connected,

then it contains two edge-disjoint spanning trees (i.e. 𝐹 (𝐺, 2) = 0). A cut-edge is called a bridge. The

following provides a sufficient condition for graphs to be ℤ3-connected through the number of edge-

disjoint spanning trees.

Theorem 1.9. Let 𝐺 be a graph.

(i) Suppose that 𝐹 (𝐺, 4) ≤ 3. Then 𝐺 is ℤ3-connected, unless 𝐺 contains a bridge. (Thus, 𝐺 is ℤ3-
connected if and only if 𝜅′(𝐺) ≥ 2.)

(ii) Suppose that 𝐹 (𝐺, 4) = 0. Then for any vertex 𝑣 ∈ 𝑉 (𝐺) with 𝑑𝐺(𝑣) ≤ 7, if 𝜅′(𝐺 − 𝑣) ≥ 2, then
𝐺 is ⟨ℤ3⟩-extendable at 𝑣.



580 HAN ET AL.

Prerequisites will be presented in the next section. In Section 3, we will study the relationship among

Conjectures 1.1, 1.2, and 1.6. Theorems 1.9, 1.7, and 1.8 will be proved in a subsequent section.

2 PREREQUISITES

In this section, we will justify Proposition 1.4 and present other preliminaries. For a graph 𝐺 and a

vertex 𝑧 ∈ 𝑉 (𝐺), define 𝑁𝐺(𝑧) = {𝑣 ∈ 𝑉 (𝐺) ∶ 𝑧𝑣 ∈ 𝐸(𝐺)}. For notation convenience, the algebraic

manipulations in the proof of Proposition 1.4 will be over ℤ3.

Proof of Proposition 1.4. As Part (ii) is straightforward, we only prove Part (i). Suppose that a graph

𝐺 is ⟨ℤ3⟩-extendable at vertex 𝑧0. Let 𝐷𝑧0 be a fixed preorientation of 𝐸𝐺(𝑧0). We also use 𝐷𝑧0 to

denote the digraph induced by the oriented edges of 𝐷𝑧0 . Define

𝑏(𝑣) = 𝑑+
𝐷𝑧0

(𝑣) − 𝑑−
𝐷𝑧0

(𝑣) for each 𝑣 ∈ 𝑁𝐺(𝑧0) ∪ {𝑧0}. (1)

Then 𝑏(𝑧0) +
∑
𝑣∈𝑁𝐺(𝑧0) 𝑏(𝑣) = 0.

We are to prove 𝐺 − 𝑧0 is ℤ3-connected. For any 𝛽 ∈ ℤ(𝐺 − 𝑧0,ℤ3), define

𝛽′(𝑣) =
⎧⎪⎨⎪⎩
𝛽(𝑣) + 𝑏(𝑣), if 𝑣 ∈ 𝑁𝐺(𝑧0);

𝑏(𝑧0), if 𝑣 = 𝑧0;

𝛽(𝑣), otherwise.

Then
∑
𝑣∈𝑉 (𝐺) 𝛽

′(𝑣) =
∑
𝑣∈𝑉 (𝐺−𝑧0) 𝛽(𝑣) + (𝑏(𝑧0) +

∑
𝑣∈𝑁𝐺(𝑧0) 𝑏(𝑣)) = 0, and so 𝛽′ ∈ 𝑍(𝐺,ℤ3). Since

𝐺 is ⟨ℤ3⟩-extendable at 𝑧0, there exists an orientation 𝐷′ of 𝐺 such that 𝑑+
𝐷′ (𝑣) − 𝑑−𝐷′ (𝑣) = 𝛽′(𝑣) for

any vertex 𝑣 ∈ 𝑉 (𝐺) and 𝐷′ agrees with 𝐷𝑧0 on 𝐸𝐺(𝑧0). Let 𝐷 be the restriction of 𝐷′ on 𝐺 − 𝑧0.

By the definition of 𝛽′, we have 𝑑+
𝐷
(𝑣) − 𝑑−

𝐷
(𝑣) = 𝛽(𝑣) for any vertex 𝑣 ∈ 𝑉 (𝐺 − 𝑧0), and so 𝐺 − 𝑧0 is

ℤ3-connected.

Conversely, assume that 𝐺 − 𝑧0 is ℤ3-connected. Let 𝛽′ ∈ 𝑍(𝐺,ℤ3), and 𝐷𝑧0 be a preorientation

of 𝐸𝐺(𝑧0) with 𝑑+
𝐷𝑧0

(𝑧0) − 𝑑−𝐷𝑧0
(𝑧0) = 𝛽′(𝑧0). Define 𝑏(𝑣) as in (1), and

𝛽(𝑣) =

{
𝛽′(𝑣) − 𝑏(𝑣), if 𝑣 ∈ 𝑁𝐺(𝑧0);

𝛽′(𝑣), otherwise.

As
∑
𝑣∈𝑉 (𝐺−𝑧0) 𝛽(𝑣) =

∑
𝑣∈𝑉 (𝐺) 𝛽

′(𝑣) = 0, we have 𝛽 ∈ 𝑍(𝐺 − 𝑧0,ℤ3). Since 𝐺 − 𝑧0 ∈ ⟨ℤ3⟩, there

exists an orientation 𝐷′ of 𝐺 − 𝑧0 satisfying 𝑑+
𝐷′ (𝑣) − 𝑑−𝐷′ (𝑣) = 𝛽′(𝑣) for any vertex 𝑣 ∈ 𝑉 (𝐺 − 𝑧0).

Combine𝐷′ and𝐷𝑧0 to obtain an orientation𝐷 of𝐺. Then for any vertex 𝑣 ∈ 𝑉 (𝐺), depending on 𝑣 =
𝑧0 or not, we always have 𝑑+

𝐷
(𝑣) − 𝑑−

𝐷
(𝑣) = 𝛽′(𝑣), and so 𝐺 is ⟨ℤ3⟩-extendable at 𝑧0. This completes

the proof of Proposition 1.4. ■

Let𝐺 be a graph and 𝛽 ∈ 𝑍(𝐺,ℤ3). Define an integer valued mapping 𝜏 ∶ 2𝑉 (𝐺) → {0,±1,±2,±3}
as follows: for each vertex 𝑥 ∈ 𝑉 (𝐺),

𝜏(𝑥) ≡

{
𝛽(𝑥) (mod 3);

𝑑(𝑥) (mod 2).
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For a vertex set𝐴 ⊂ 𝑉 (𝐺), denote 𝛽(𝐴) ≡
∑
𝑣∈𝐴 𝛽(𝑣) (mod 3), 𝑑(𝐴) = |[𝐴, 𝑉 (𝐺) − 𝐴]| and define

𝜏(𝐴) to be

𝜏(𝐴) ≡

{
𝛽(𝐴) (mod 3);

𝑑(𝐴) (mod 2).

Theorem 2.1. (Lovász, Thomassen, Wu, and Zhang, Theorem 3.1 of [19]) Let 𝐺 be a graph, 𝛽 ∈
𝑍(𝐺,ℤ3) and 𝑧0 ∈ 𝑉 (𝐺). If 𝐷𝑧0 is a preorientation of 𝐸𝐺(𝑧0), and if

(i) |𝑉 (𝐺)| ≥ 3,
(ii) 𝑑(𝑧0) ≤ 4 + |𝜏(𝑧0)| and 𝑑+(𝑧0) − 𝑑−(𝑧0) ≡ 𝛽(𝑧0) (mod 3), and

(iii) 𝑑(𝐴) ≥ 4 + |𝜏(𝐴)| for each nonempty 𝐴 ⊆ 𝑉 (𝐺) − {𝑧0} with |𝑉 (𝐺) − 𝐴| ≥ 2,

then 𝐷𝑧0 can be extended to a 𝛽-orientation of the entire graph 𝐺.

The following is an application of Theorem 2.1.

Lemma 2.2. Let 𝐺 be a 6-edge-connected graph. Each of the following holds.

(i) If 𝑣 ∈ 𝑉 (𝐺) with 𝑑(𝑣) ≤ 7, then 𝐺 − 𝑣 ∈ ⟨ℤ3⟩.
(ii) If 𝐸1 ⊂ 𝐸(𝐺) with |𝐸1| ≤ 3, then 𝐺 − 𝐸1 ∈ ⟨ℤ3⟩.
Proof. (i) we may assume that 𝑑𝐺(𝑣) = 7 to prove the lemma. Otherwise, pick an edge 𝑒 ∈ 𝐸𝐺(𝑣)
and add an edge parallel to 𝑒, which results in still a 6-edge-connected graph. Take an arbitrary 𝛽′ ∈
𝑍(𝐺 − 𝑣,ℤ3). We shall show that𝐺 − 𝑣 has a 𝛽′-orientation. Define 𝛽(𝑣) = 3. We shall apply Theorem

2.1 by viewing 𝑣 as 𝑧0 in Theorem 2.1. Since 𝑑(𝑣) = 7, we have |𝜏(𝑣)| = 3, and thus we can orient the

edges𝐸𝐺(𝑣) with an orientation𝐷𝑣 so that 𝑑+
𝐷𝑣
(𝑣) = 5 and 𝑑−

𝐷𝑣
(𝑣) = 2. Define 𝑏(𝑥) = 𝑑+

𝐷𝑣
(𝑥) − 𝑑−

𝐷𝑣
(𝑥)

for each 𝑥 ∈ 𝑁𝐺(𝑣) and set

𝛽(𝑥) =
⎧⎪⎨⎪⎩
𝛽′(𝑥) + 𝑏(𝑥), if 𝑥 ∈ 𝑁𝐺(𝑣);

𝛽(𝑣), if 𝑥 = 𝑣;

𝛽′(𝑥), otherwise.

(2)

Then 𝛽 ∈ 𝑍(𝐺,ℤ3). As 𝜅′(𝐺) ≥ 6, conditions (i)–(iii) of Theorem 2.1 are satisfied, and so by Theorem

2.1, 𝐺 has a 𝛽-orientation 𝐷. Let 𝐷′ be the restriction of 𝐷 on 𝐺 − 𝑣. By (2), 𝐷′ is a 𝛽′-orientation of

𝐺 − 𝑣. This proves (i).

(ii) Since ℤ3-connectedness is preserved under adding edges, we may assume that |𝐸1| = 3. In the

graph 𝐺, subdivide each edge in 𝐸1 with an internal vertex, say 𝑧1, 𝑧2, 𝑧3. Identify 𝑧1, 𝑧2, 𝑧3 to form a

new vertex 𝑧0 in the resulted graph 𝐺′. By the construction of 𝐺′, we have 𝜅′(𝐺′) ≥ 6. By Lemma 2.2

(i), 𝐺 − 𝐸1 = 𝐺′ − 𝑧0 ∈ ⟨ℤ3⟩. ■

For an edge set 𝑋 ⊆ 𝐸(𝐺), the contraction 𝐺∕𝑋 is the graph obtained from 𝐺 by identifying the

two ends of each edge in 𝑋, and then deleting the resulting loops. If 𝐻 is a subgraph of 𝐺, then we

use 𝐺∕𝐻 for 𝐺∕𝐸(𝐻). For a vertex set𝑊 ⊂ 𝑉 (𝐺) such that 𝐺[𝑊 ] is connected, we also use 𝐺∕𝑊
for 𝐺∕𝐺[𝑊 ].

Lemma 2.3. (Proposition 2.1 of [13]) Let 𝐺 be a graph. Each of the following holds.

(i) If 𝐺 ∈ ⟨ℤ3⟩ and 𝑒 ∈ 𝐸(𝐺), then 𝐺∕𝑒 ∈ ⟨ℤ3⟩.
(ii) If𝐻 ⊆ 𝐺 and if𝐻,𝐺∕𝐻 ∈ ⟨ℤ3⟩, then 𝐺 ∈ ⟨ℤ3⟩.
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F I G U R E 1 The graph 𝐽 : a 4-edge-connected ⟨ℤ3⟩-reduced graph

3 RELATIONSHIP AMONG THE CONJECTURES

A graph is called ⟨ℤ3⟩-reduced if it does not have any nontrivial ℤ3-connected subgraphs. By defi-

nition, 𝐾1 is ⟨ℤ3⟩-reduced. The potential minimal counterexamples of Conjectures 1.1 and 1.2 must

be ⟨ℤ3⟩-reduced graphs. As an example, it is routine to verify that the 4-edge-connected non-ℤ3-

connected graph 𝐽 constructed by Jaeger et al. [11] (see Figure 1) is indeed a ⟨ℤ3⟩-reduced graph.

Applying Theorem 2.1, we obtain the following.

Lemma 3.1. Every ⟨ℤ3⟩-reduced graph has minimal degree at most 5.

Proof. Suppose, to the contrary, that there is a ⟨ℤ3⟩-reduced graph 𝐺 with 𝛿(𝐺) ≥ 6. As a cycle of

length 2 isℤ3-connected,𝐺 has no parallel edges and |𝑉 (𝐺)| ≥ 4. If 𝜅′(𝐺) ≥ 6, then𝐺 isℤ3-connected

by Theorem 1.5, contradicting that 𝐺 is a ⟨ℤ3⟩-reduced graph. For a vertex subset 𝑊 ⊂ 𝑉 (𝐺), let

𝑊 𝑐 = 𝑉 (𝐺) −𝑊 . Among all those edge-cuts [𝑊 ,𝑊 𝑐] of size at most 5 in 𝐺, choose the one with|𝑊 | minimized. Let 𝑣𝑐 denote the vertex onto which 𝑊 𝑐 is contracted in 𝐺∕𝑊 𝑐 . Obtain a graph 𝐺′

from𝐺∕𝑊 𝑐 by adding 6 − 𝑑𝐺∕𝑊 𝑐 (𝑣𝑐) edges between𝑊 and 𝑣𝑐 . Then 𝜅′(𝐺′) ≥ 6 by the choice of𝑊 .

By Lemma 2.2 (i), 𝐺[𝑊 ] = 𝐺′ − 𝑣𝑐 is ℤ3-connected, a contradiction. ■

Very recently, Lemma 3.1 has already an application in [17] to verify Tutte's 3-flow conjecture for

graphs with independent number at most four. We believe that the following strengthening of Lemma

3.1 holds as well, whose truth implies Conjecture 1.2, as will be shown below in Proposition 3.3.

Conjecture 3.2. Every ⟨ℤ3⟩-reduced graph has minimal degree at most 4.

The following proposition reveals some relationship among the conjectures.

Proposition 3.3. Each of the following holds.

(i) Conjecture 1.6 implies validity of Conjecture 3.2.
(ii) Conjecture 3.2 implies validity of Conjecture 1.2.

Proof. We shall prove (ii) first. Assume that Conjecture 3.2 holds. Then by the validity of Conjecture

3.2, every graph with minimum degree at least five is not ⟨ℤ3⟩-reduced. Let 𝐺 be a counterexample

to Conjecture 1.2 with |𝑉 (𝐺)| minimized. Since 𝛿(𝐺) ≥ 𝜅′(𝐺) ≥ 5, 𝐺 is not ⟨ℤ3⟩-reduced, and so

𝐺 contains a nontrivial ℤ3-connected subgraph𝐻 . Since 𝜅′(𝐺∕𝐻) ≥ 𝜅′(𝐺) ≥ 5, and since |𝑉 (𝐺)| >|𝑉 (𝐺∕𝐻)|, the minimality of 𝐺 implies that 𝐺∕𝐻 is ℤ3-connected. By Lemma 2.3 (ii), 𝐺 must be
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ℤ3-connected as well, contrary to the assumption that 𝐺 is a counterexample of Conjecture 1.2. This

proves (ii).

To prove (i), we use arguments similar to those in the proof of Lemma 3.1. By contradiction, we

assume that Conjecture 1.6 holds but there is a counterexample 𝐺 to Conjecture 3.2 with |𝑉 (𝐺)| min-

imized and with 𝛿(𝐺) ≥ 5. By the validity of Conjecture 1.6, 𝐺 must have an essential edge-cut of

size at most 5. Among all those essential edge-cuts [𝑊 ,𝑊 𝑐] of size at most 5, choose the one with|𝑊 | minimized. Let 𝑣𝑐 denote the vertex onto which𝑊 𝑐 is contracted in 𝐺∕𝑊 𝑐 . Adding some edges

between 𝑊 and 𝑣𝑐 such that 𝑣𝑐 has degree 5 in the new graph, and we still denote it 𝐺∕𝑊 𝑐 . Then

we have |𝑊 | ≥ 2, and the minimality of |𝑊 | forces that 𝐺∕𝑊 𝑐 is an essentially 6-edge-connected

graph. By the assumption that Conjecture 1.6 holds, 𝐺∕𝑊 𝑐 is ⟨ℤ3⟩-extendable at 𝑣𝑐 . By Proposition

1.4, 𝐺[𝑊 ] = 𝐺∕𝑊 𝑐 − 𝑣𝑐 ∈ ⟨ℤ3⟩, contradicting that 𝐺 is ⟨ℤ3⟩-reduced. ■

In the rest of this section, we study the relationship between ⟨ℤ3⟩-extendability and edge deletions.

Theorem 3.4 below indicates that deleting one or two adjacent edges does not make Conjecture 1.2

stronger. Theorem 3.5 and Proposition 3.6 below also describe the strength of Conjecture 3.2 and

Conjecture 1.6 via edge deletions.

Theorem 3.4. The following statements are equivalent.

(i) Every 5-edge-connected graph is ℤ3-connected.
(ii) Every 5-edge-connected graph with two adjacent edges deleted is ℤ3-connected.

Theorem 3.5. The following statements are equivalent.

(i) Every ⟨ℤ3⟩-reduced graph has minimal degree at most 4.
(ii) Every 5-edge-connected graph with any two edges deleted is ℤ3-connected.

Proposition 3.6. The following statements are equivalent.

(i) Every 5-edge-connected essentially 6-edge-connected graph is ⟨ℤ3⟩-extendable at any vertex of
degree 5.

(ii) Every 5-edge-connected graph is ⟨ℤ3⟩-extendable at any vertex of degree 5.
(iii) Every 5-edge-connected graph with three incident edges of a degree 5 vertex deleted is ℤ3-

connected.

We shall justify Theorem 3.4 and Theorem 3.5 by utilizing Kochol's method in [12]. In [12], Kochol

applies 3-extension on a degree 5 vertex and converts it into degree 3 vertices, which helps him

establish Theorem 1.3. Unlike mod 3-orientations, direct application of the method above does not

seem to help on ⟨ℤ3⟩-extension for certain 𝛽-orientation. We observe that some edge deletions behave

similarly as extension, as showed in Proposition 1.4 and the theorems above. This is part of the reason

why we would like to prove Theorem 1.9 in the form of edge deletions.

A lemma is needed to prove Theorems 3.4 and 3.5.

Definition 3.7. Let𝐺1 be a graph with 𝑒 = 𝑢1𝑣1 ∈ 𝐸(𝐺1), and𝐺2(𝑢2, 𝑣2) be a graph with distinguished

(and distinct) vertices of 𝑢2, 𝑣2. Let 𝐺1 ⊕𝑒 𝐺2 be a graph obtained from the disjoint union of 𝐺1 − 𝑒
and𝐺2 by identifying 𝑢1 and 𝑢2 to form a vertex 𝑢, and by identifying 𝑣1 and 𝑣2 to form a vertex 𝑣. Thus

for 𝑖 ∈ {1, 2}, we can view 𝑢 = 𝑢𝑖 and 𝑣 = 𝑣𝑖 in 𝐺𝑖. Note that even if 𝑒 and 𝑢2, 𝑣2 are given, 𝐺1 ⊕𝑒 𝐺2
may not be unique. Thus we use 𝐺1 ⊕𝑒 𝐺2 to denote any one of the resulting graphs.

Lemma 3.8. Let 𝐺1 and 𝐺2 be nontrivial graphs with 𝑒 ∈ 𝐸(𝐺1).
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(i) If 𝐺1 and 𝐺2 are not ℤ3-connected graphs, then 𝐺1 ⊕𝑒 𝐺2 is not ℤ3-connected.
(ii) If 𝐺1 and 𝐺2 are ⟨ℤ3⟩-reduced graphs, then 𝐺1 ⊕𝑒 𝐺2 is a ⟨ℤ3⟩-reduced graph.

Proof. (i) The proof is similar to those of Lemma 1 in [12] and of Lemma 2.5 in [6]. Let 𝐺 =
𝐺1 ⊕𝑒 𝐺2. We shall adopt the notation in Definition 3.7. Fix 𝑖 ∈ {1, 2}. Since 𝐺𝑖 is not ℤ3-connected,

there exists a 𝛽𝑖 ∈ 𝑍(𝐺𝑖,ℤ3) such that 𝐺𝑖 does not have a 𝛽𝑖-orientation. Define 𝛽 ∶ 𝑉 (𝐺) → ℤ3 as

follows:

𝛽(𝑥) =
⎧⎪⎨⎪⎩
𝛽1(𝑥), if 𝑥 ∈ 𝑉 (𝐺1) − {𝑢1, 𝑣1};

𝛽2(𝑥), if 𝑥 ∈ 𝑉 (𝐺2) − {𝑢2, 𝑣2};

𝛽1(𝑥) + 𝛽2(𝑥), if 𝑥 ∈ {𝑢, 𝑣}.

As
∑
𝑧∈𝑉 (𝐺) 𝛽(𝑧) =

∑2
𝑖=1

∑
𝑧∈𝑉 (𝐺𝑖) 𝛽𝑖(𝑧), we have 𝛽 ∈ 𝑍(𝐺,ℤ3). It remains to show that 𝐺 does not

have a 𝛽-orientation. By contradiction, assume that 𝐺 has a 𝛽-orientation 𝐷. Let 𝐷2 be the restriction

of𝐷 on 𝐸(𝐺2). Then 𝑑+
𝐷2
(𝑥) − 𝑑−

𝐷2
(𝑥) = 𝛽2(𝑥) in ℤ3 for any 𝑥 ∈ 𝑉 (𝐺2) − {𝑢2, 𝑣2}. Since𝐺2 does not

have a 𝛽2-orientation, we must have 𝑑+
𝐷2
(𝑢) − 𝑑−

𝐷2
(𝑢) ≠ 𝛽2(𝑢) in ℤ3. Thus, we have either

𝑑+
𝐷2
(𝑢) − 𝑑−

𝐷2
(𝑢) = 𝛽2(𝑢) + 1 and 𝑑+

𝐷2
(𝑣) − 𝑑−

𝐷2
(𝑣) = 𝛽2(𝑣) − 1, (3)

or

𝑑+
𝐷2
(𝑢) − 𝑑−

𝐷2
(𝑢) = 𝛽2(𝑢) − 1 and 𝑑+

𝐷2
(𝑣) − 𝑑−

𝐷2
(𝑣) = 𝛽2(𝑣) + 1. (4)

Let𝐷′
1 be the restriction of𝐷 on𝐸(𝐺1) − 𝑒. If (3) holds, then both 𝑑+

𝐷′
1
(𝑢) − 𝑑−

𝐷′
1
(𝑢) = 𝛽1(𝑢) − 1 and

𝑑+
𝐷′
1
(𝑣) − 𝑑−

𝐷′
1
(𝑣) = 𝛽1(𝑣) + 1. Obtain an orientation 𝐷1 of 𝐺1 from 𝐷′

1 by orienting 𝑒 = 𝑢1𝑣1 from 𝑢1

to 𝑣1. If (4) holds, then both 𝑑+
𝐷′
1
(𝑢) − 𝑑−

𝐷′
1
(𝑢) = 𝛽1(𝑢) + 1 and 𝑑+

𝐷′
1
(𝑣) − 𝑑−

𝐷′
1
(𝑣) = 𝛽1(𝑣) − 1. Obtain an

orientation𝐷1 of𝐺1 from𝐷′
1 by orienting 𝑒 = 𝑢1𝑣1 from 𝑣1 to 𝑢1. In either case,𝐷1 is a 𝛽1-orientation

of 𝐺1, contrary to the choice of 𝛽1. (ii) follows from (i) by the definition of ⟨ℤ3⟩-reduced graph. This

proves the lemma. ■

Similar operations as Definition 3.7 are developed in [8] to construct infinite families of 4𝑝-edge-

connected graphs without mod (2𝑝 + 1)-orientation for every 𝑝 ≥ 3, which disproves Jaeger's circular

flow conjecture. Now we are ready to prove Theorem 3.4 below.

Proof of Theorem 3.4. It suffices to prove that (i) implies (ii). By contradiction, assume that (i) holds

and that there exists a graph Γ with 𝜅′(Γ) ≥ 5 and with two distinct adjacent edges 𝑣𝑣1, 𝑣𝑣2 ∈ 𝐸(Γ),
where 𝑣1 and 𝑣2 may or may not be distinct, such that Γ − {𝑣𝑣1, 𝑣𝑣2} ∉ ⟨ℤ3⟩. As 𝜅′(Γ) ≥ 5, |𝐸Γ(𝑣)| ≥
5. Let 𝐾 ≅ 𝐾4 with 𝑉 (𝐾) = {𝑤1, 𝑤2, 𝑤3, 𝑤4}.

We assume first that 𝑣1 ≠ 𝑣2 in Γ, and use 𝐿(𝑣1, 𝑣2) to denote Γ − {𝑣𝑣1, 𝑣𝑣2} with 𝑣1 and 𝑣2
being two distinguished vertices. For 1 ≤ 𝑗 ≤ 2, let 𝜙𝑗 ∶ 𝐿𝑗(𝑣

𝑗

1, 𝑣
𝑗

2) → 𝐿(𝑣1, 𝑣2) be a graph isomor-

phism with 𝜙𝑗(𝑣𝑗) = 𝑣, 𝜙𝑗(𝑣
𝑗

1) = 𝑣1 and 𝜙𝑗(𝑣
𝑗

2) = 𝑣2. Define 𝐽 (𝑣1, 𝑣2) = 𝐾 ⊕𝑤1𝑤2
𝐿1(𝑣11, 𝑣

1
2)⊕𝑤3𝑤4

𝐿2(𝑣21, 𝑣
2
2). Let 𝐽𝑘(𝑣1, 𝑣2), (1 ≤ 𝑘 ≤ 3), be three isomorphic copies of 𝐽 (𝑣1, 𝑣2), and define 𝐺(Γ) =

𝐾 ⊕𝑤1𝑤2
𝐽 1(𝑣1, 𝑣2)⊕𝑤2𝑤3

𝐽 2(𝑣1, 𝑣2)⊕𝑤3𝑤4
𝐽 3(𝑣1, 𝑣2), as depicted in Figure 2. By the definition of

𝐺(Γ), 𝐺(Γ) contains six subgraphs𝐻𝑖, (1 ≤ 𝑖 ≤ 6), each of which is isomorphic to Γ − {𝑣𝑣1, 𝑣𝑣2}.

It is known that 𝐾 ∉ ⟨ℤ3⟩. As Γ − {𝑣𝑣1, 𝑣𝑣2} ∉ ⟨ℤ3⟩, it follows from Lemma 3.8 that 𝐽 (𝑣1, 𝑣2) ∉⟨ℤ3⟩, and so by repeated applications of Lemma 3.8, 𝐺(Γ) ∉ ⟨ℤ3⟩.
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F I G U R E 2 The construction in Theorem 3.4

Let 𝑊 ⊆ 𝐸(Γ) be a minimum edge cut of 𝐺(Γ). If for any 𝑖, |𝑊 ∩ 𝐸(𝐻𝑖)| = 0, then 𝑊 is an

edge cut of the graph 𝐺(Γ)∕(∪6
𝑖=1𝐻𝑖), and so it is straightforward to check that |𝑊 | ≥ 5. Hence we

assume that for some 𝑖,𝑊 ∩ 𝐸(𝐻𝑖) ≠ ∅. Then Γ − {𝑣𝑣1, 𝑣𝑣2} contains an edge subset𝑊 ′
𝑖

correspond-

ing to 𝑊 ∩ 𝐸(𝐻𝑖) under the isomorphism between Γ − {𝑣𝑣1, 𝑣𝑣2} and 𝐻𝑖. If 𝑊 ′
𝑖

does not separate

the neighbors of 𝑣 and {𝑣1, 𝑣2} in Γ, then 𝑊 ′
𝑖

is an edge cut of Γ, and so |𝑊 | ≥ |𝑊 ′
𝑖
| ≥ 𝜅′(Γ) ≥ 5.

Hence by symmetry, we assume that 𝑣 and 𝑣1 are in different components of Γ −𝑊 ′
𝑖

. Since 𝜅′(Γ) ≥ 5,

we have |𝑊 ′
𝑖
| ≥ 𝜅′(Γ − {𝑣𝑣1, 𝑣𝑣2}) = 5 − 2 = 3. By the definition of 𝐺(Γ), 𝐺(Γ) − 𝐸(𝐻𝑖) contains 2

edge-disjoint (𝑣, 𝑣1)-paths, which implies that |𝑊 − 𝐸(𝐻𝑖)| ≥ 2, and so |𝑊 | = |𝑊 ∩ 𝐸(𝐻𝑖)| + |𝑊 −
𝐸(𝐻𝑖)| ≥ 3 + 2 = 5. We conclude that 𝜅′(𝐺(Γ)) ≥ 5. By Theorem 3.4(i), we have𝐺(Γ) ∈ ⟨ℤ3⟩, which

leads to a contradiction to the fact that 𝐺(Γ) ∉ ⟨ℤ3⟩.
Next we assume that 𝑣1 = 𝑣2. Then for 𝑗 = 1, 2, 𝑣

𝑗

1 = 𝑣
𝑗

2 in 𝐿𝑗(𝑣
𝑗

1, 𝑣
𝑗

2). In this case, we differently

define 𝐽 (𝑣1, 𝑣2) to be the graph obtained from the disjoint union of 𝐿1(𝑣11, 𝑣
1
2) and 𝐿2(𝑣21, 𝑣

2
2) by

identifying 𝑣11 with 𝑣21. Since 𝐿1(𝑣11, 𝑣
1
2) is a block of 𝐽 (𝑣1, 𝑣2), 𝐽 (𝑣1, 𝑣2) ∉ ⟨ℤ3⟩. We again define

𝐺(Γ) = 𝐾 ⊕𝑤1𝑤2
𝐽 1(𝑣1, 𝑣2)⊕𝑤2𝑤3

𝐽 2(𝑣1, 𝑣2)⊕𝑤3𝑤4
𝐽 3(𝑣1, 𝑣2). Then by Lemma 3.8, 𝐺(Γ) ∉ ⟨ℤ3⟩.

By a similar argument as shown above, we again conclude that 𝜅′(𝐺(Γ)) ≥ 5, and so by Theorem 3.4(i),

𝐺(Γ) ∈ ⟨ℤ3⟩. This contradiction establishes the theorem. ■

We need the following splitting theorem of Mader [20] before proceeding the next proof. For two

distinct vertices 𝑥, 𝑦, let 𝜆𝐺(𝑥, 𝑦) be the maximum number of edge-disjoint paths connecting 𝑥 and 𝑦

in 𝐺. The following Mader's theorem asserts that local edge-connectivity is preserved under splitting.

Theorem 3.9. (Mader [20]) Let 𝐺 be a graph and let 𝑧 be a nonseparating vertex of 𝐺 with degree
at least 𝑓𝑜𝑢𝑟 and |𝑁𝐺(𝑧)| ≥ 2. Then there exist two edges 𝑣1𝑧, 𝑣2𝑧 in 𝐺 such that, splitting 𝑣1𝑧, 𝑣2𝑧,
the resulting graph 𝐺′ = 𝐺 − 𝑣1𝑧 − 𝑣2𝑧 + 𝑣1𝑣2 satisfies 𝜆𝐺′ (𝑥, 𝑦) = 𝜆𝐺(𝑥, 𝑦) for any two vertices 𝑥, 𝑦
different from 𝑧.

Proof of Theorem 3.5. (i) ⇒ (ii). By contradiction, assume that (i) holds and that there exists a 5-

edge-connected graph Γ with |𝑉 (Γ)| minimized and with two distinct edges 𝑢1𝑢2, 𝑣1𝑣2 ∈ 𝐸(Γ), where

𝑢1 and 𝑣1 may or may not be distinct, such that 𝐺 = Γ − {𝑢1𝑢2, 𝑣1𝑣2} ∉ ⟨ℤ3⟩. By the minimality

of |𝑉 (Γ)|, 𝐺 must be a ⟨ℤ3⟩-reduced graph. For 𝑖 = 1, 2, let 𝐾𝑖 ≅ 𝐾3 with 𝑉 (𝐾𝑖) = {𝑤𝑖1, 𝑤
𝑖
2, 𝑤

𝑖
3}.

Define 𝐾(𝑣1, 𝑣2) = 𝐾1 ⊕
𝑤1
1𝑤

1
2
𝐺(𝑢1, 𝑢2) and 𝐻(𝑤1

3, 𝑤
2
3) = 𝐾

2 ⊕
𝑤2
1𝑤

2
2
𝐾(𝑣1, 𝑣2). As 𝐾3 and 𝐺 are⟨ℤ3⟩-reduced graphs, by Lemma 3.8(ii), 𝐻(𝑤1

3, 𝑤
2
3) is a ⟨ℤ3⟩-reduced graph. Moreover, 𝐻(𝑤1

3, 𝑤
2
3)
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v2 w2
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F I G U R E 3 The construction in Theorem 3.5

has exactly two vertices of degree 2, namely 𝑤1
3, 𝑤

2
3, and the other vertices of𝐻(𝑤1

3, 𝑤
2
3) have degree

at least five.

Let 𝐽 be the graph as depicted in Figure 1 with 𝑉 (𝐽 ) = {𝑥1,… , 𝑥12}. Obtain a graph 𝐺∗ by attach-

ing copies of 𝐻(𝑤1
3, 𝑤

2
3) and applying ⊕𝑒 operation for each 𝑒 = 𝑥2𝑖−1𝑥2𝑖, 1 ≤ 𝑖 ≤ 6, as depicted in

Figure 3. Then we have 𝛿(𝐺∗) ≥ 5. By the validity of (i),𝐺∗ is not ⟨ℤ3⟩-reduced. On the other hand, as

𝐾3 and𝐺 are ⟨ℤ3⟩-reduced, it follows by Lemma 3.8(ii) that𝐻(𝑤1
3, 𝑤

2
3) is also ⟨ℤ3⟩-reduced. As 𝐽 and

𝐻(𝑤1
3, 𝑤

2
3) are ⟨ℤ3⟩-reduced, we conclude by Lemma 3.8(ii) that 𝐺∗ is also ⟨ℤ3⟩-reduced, contrary to

the fact that 𝐺∗ is not ⟨ℤ3⟩-reduced, as implied by (i). This shows that (i) implies (ii).

(ii) ⇒ (i). Assume that (ii) holds. Then (ii) implies that every 5-edge-connected graph is ℤ3-

connected. Let 𝐺 be a counterexample to (i). Then 𝐺 is a ⟨ℤ3⟩-reduced graph with 𝛿(𝐺) ≥ 5. If

𝜅′(𝐺) ≥ 5, then by (ii), 𝐺 itself is ℤ3-connected, contrary to the assumption that 𝐺 is ⟨ℤ3⟩-reduced.

Hence 𝜅′(𝐺) ≤ 4. Since 𝛿(𝐺) ≥ 5, 𝐺 must have an essential edge-cut of size at most 4. Among all

essential edge-cuts [𝑊 ,𝑊 𝑐] of size at most 4, choose one with |𝑊 | minimized. Since 𝐺 is a ⟨ℤ3⟩-
reduced graph, 𝐺[𝑊 ] is also a ⟨ℤ3⟩-reduced graph. Moreover, we claim that it is possible to add two

new edges to𝐺[𝑊 ] to result in a 5-edge-connected graph. If |[𝑊 ,𝑊 𝑐]| ≤ 3, we obtain a graph𝐺[𝑊 ]+
from 𝐺[𝑊 ] by appropriately adding two new edges (possibly parallel) joining vertices in 𝑊 so that

𝛿(𝐺[𝑊 ]+) ≥ 5, and so by the minimality of |𝑊 |, we have 𝜅′(𝐺[𝑊 ]+) ≥ 5. By the validity of (ii),

we conclude that 𝐺[𝑊 ] is ℤ3-connected. Since 𝛿(𝐺) ≥ 5, 𝐺[𝑊 ] is a nontrivial subgraph of 𝐺. This

contradicts the assumption that 𝐺 is a ⟨ℤ3⟩-reduced graph.

Hence we assume that |[𝑊 ,𝑊 𝑐]| = 4. Let 𝐻 = 𝐺∕𝑊 𝑐 and 𝑧 be the vertex onto which 𝐺[𝑊 𝑐]
is contracted, and denote 𝐸𝐻 (𝑧) = {𝑒1, 𝑒2, 𝑒3, 𝑒4} with 𝑒𝑖 = 𝑧𝑣𝑖, 1 ≤ 𝑖 ≤ 4. Since 𝐸𝐻 (𝑧) may contain

parallel edges, the 𝑣𝑖's do not have to be distinct. By the minimality of𝑊 and Menger's theorem, we

have 𝜆𝐻 (𝑥, 𝑦) ≥ 5 for any two vertices 𝑥, 𝑦 ∈ 𝑉 (𝐻) − {𝑧}.

Suppose first that 𝐻[𝐸𝐻 (𝑧)] contains parallel edges. Assume that 𝑧 and 𝑣1 are joined by at least

two edges. Define𝐻 ′′ = 𝐻∕𝐻[{𝑧, 𝑣1}]. By the minimality of𝑊 , we have 𝜅′(𝐻 ′′) ≥ 5. As |𝐸𝐻 (𝑧) −
𝐸(𝐻[{𝑧, 𝑣1}])| ≤ 2, it follows by (ii) that 𝐺[𝑊 ] = 𝐻 ′′ − (𝐸𝐻 (𝑧) − 𝐸(𝐻[{𝑧, 𝑣1}])) is ℤ3-connected,

contrary to the assumption that 𝐺 is ⟨ℤ3⟩-reduced.

Hence we assume that𝐻[𝐸𝐻 (𝑧)] contains no parallel edges, and so the 𝑣𝑖's are four distinct vertices.

By Theorem 3.9, we may assume that the graph 𝐻 ′ = 𝐻 − 𝑣1𝑧 − 𝑣2𝑧 + 𝑣1𝑣2 satisfies 𝜆𝐻 ′ (𝑥, 𝑦) =
𝜆𝐻 (𝑥, 𝑦) ≥ 5 for any two vertices 𝑥, 𝑦 ∈ 𝑉 (𝐻 ′) − {𝑧}. This implies that the graph 𝐻 ′′ = 𝐻 ′∕{𝑧𝑣3}
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is 5-edge-connected. By (ii), 𝐺[𝑊 ] ≅ 𝐻 ′′ − {𝑣1𝑣2, 𝑒4} ∈ ⟨ℤ3⟩, contrary to the assumption that 𝐺 is⟨ℤ3⟩-reduced. ■

Proposition 3.6 indicates certain implications of Conjecture 1.6. The proof of Proposition 3.6 is

similar to that of Proposition 3.3 and is omitted.

4 PROOFS OF THEOREMS 1.7, 1.8, AND 1.9

Theorems 1.7, 1.8, and 1.9 will be proved in this section. We start with two lemmas.

Lemma 4.1. (Lemma 3.1(i) in [13]) Let 𝐺 be a graph, 𝑣 be a vertex of 𝐺 with degree at least four and
𝑣𝑣1, 𝑣𝑣2 ∈ 𝐸𝐺(𝑣). If 𝐺′ = 𝐺 − 𝑣𝑣1 − 𝑣𝑣2 + 𝑣1𝑣2 is ℤ3-connected, then 𝐺 is ℤ3-connected.

Lemma 4.2. Let 𝐺 be a graph, 𝑣 be a vertex of 𝐺 with degree at least four and 𝑣𝑣1, 𝑣𝑣2 ∈ 𝐸𝐺(𝑣). If
𝐺1 = 𝐺 − 𝑣 + 𝑣1𝑣2 is ℤ3-connected, then 𝐺 is ℤ3-connected.

Proof. Let 𝐺2 = 𝐺 − 𝑣𝑣1 − 𝑣𝑣2 + 𝑣1𝑣2. As |[{𝑣}, 𝑉 (𝐺) − {𝑣}]𝐺2
| = 𝑑𝐺(𝑣) − 2 ≥ 2, we have

𝐺2∕𝐺1 ∈ ⟨ℤ3⟩. Since 𝐺1 ∈ ⟨ℤ3⟩ and 𝐺2∕𝐺1 ∈ ⟨ℤ3⟩, it follows by Lemma 2.3 that 𝐺2 ∈ ⟨ℤ3⟩. By

Lemma 4.1, 𝐺2 ∈ ⟨ℤ3⟩ implies that 𝐺 ∈ ⟨ℤ3⟩. ■

For an integer 𝑘 > 0, it is known (see [22], or more explicitly, Lemma 3.1 of [14] or Lemma 3.4

of [18]) that if 𝐹 (𝐻, 𝑘) > 0 for any nontrivial proper subgraph𝐻 of 𝐺, then

𝐹 (𝐺, 𝑘) = 𝑘(|𝑉 (𝐺)| − 1) − |𝐸(𝐺)|. (5)

Proof of Theorem 1.9. Assume that Theorem 1.9 (i) holds and that 𝐺 is a graph with 𝐹 (𝐺, 4) = 0.

If 𝑣 ∈ 𝑉 (𝐺) with 𝑑𝐺(𝑣) ≤ 7 satisfies 𝜅′(𝐺 − 𝑣) ≥ 2, then 𝐹 (𝐺 − 𝑣, 4) ≤ 3 and so by Theorem 1.9 (i),

𝐺 − 𝑣 is ℤ3-connected. It follows from Proposition 1.4 that 𝐺 is ⟨ℤ3⟩-extendable at vertex 𝑣. Thus if

(i) holds, then (ii) would follow as well. Hence it suffices to show that

if 𝐹 (𝐺, 4) ≤ 3 and 𝜅′(𝐺) ≥ 2, then 𝐺 ∈ ⟨ℤ3⟩. (6)

We argue by contradiction and assume that

𝐺 is a counterexample to (6) with |𝑉 (𝐺)| + |𝐸(𝐺)| minimized. (7)

As (i) holds if |𝑉 (𝐺)| ≤ 2, we assume that |𝑉 (𝐺)| ≥ 3. By assumption, there exists a set𝐸1 of edges not

in 𝐺 with |𝐸1| = 𝐹 (𝐺, 4) such that 𝐺+ = 𝐺 + 𝐸1 contains four edge-disjoint spanning trees, denoted

𝑇1, 𝑇2, 𝑇3, 𝑇4.

Claim 1. Each of the following holds.

(i) For any nontrivial proper subgraph𝐻 of 𝐺,𝐻 ∉ ⟨ℤ3⟩ and 𝐹 (𝐻, 4) ≥ 3.

(ii) 𝐺 is 4-edge-connected.

Proof of Claim 1.

(i) Let 𝐻 be a nontrivial proper subgraph of 𝐺. As 𝐹 (𝐺∕𝐻, 4) ≤ 3 (see, for example, Lemma 2.1

of [18]), if 𝐻 ∈ ⟨ℤ3⟩, then by (7) and 𝜅′(𝐺∕𝐻) ≥ 𝜅′(𝐺) ≥ 2, we have 𝐺∕𝐻 ∈ ⟨ℤ3⟩, and so by

Lemma 2.3, 𝐺 ∈ ⟨ℤ3⟩, contrary to (7). Hence we must have 𝐻 ∉ ⟨ℤ3⟩. If 𝐹 (𝐻, 4) ≤ 2, then by

𝜅′(𝐻) ≥ 2 and (7), we have𝐻 ∈ ⟨ℤ3⟩, contrary to the fact that𝐻 ∉ ⟨ℤ3⟩. This proves Claim 1(i).
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(ii) To prove Claim 1(ii), assume that 𝐺 has a minimum edge-cut 𝑊 with |𝑊 | ≤ 3. Let 𝐻1, 𝐻2 be

the two components of 𝐺 −𝑊 . By (i) and by (5), we have

𝐹 (𝐻1, 4) + 𝐹 (𝐻2, 4) =
2∑
𝑖=1

[4(|𝑉 (𝐻𝑖)| − 1) − 𝐸(𝐻𝑖)|] = 𝐹 (𝐺, 4) − 4 + |𝑊 | ≤ |𝑊 | − 1 ≤ 2.

This, together with the fact that 𝑊 is a minimum edge-cut, implies that 𝜅′(𝐻𝑖) ≥ 2 for each 𝑖 ∈
{1, 2}. Since |𝑉 (𝐺)| ≥ 3, at least one of𝐻1 and𝐻2 is nontrivial, contrary to Claim 1(i). Thus Claim

1(ii) must hold. ■

Claim 2. 𝐸(𝐺+) = ∪4
𝑖=1𝐸(𝑇𝑖).

Proof of Claim 2. Suppose that there exists 𝑒 ∈ 𝐸(𝐺+) − ∪4
𝑖=1𝐸(𝑇𝑖). The minimality of 𝐸1 indicates

that 𝐸1 ⊆ ∪4
𝑖=1𝐸(𝑇𝑖), and thus 𝑒 ∈ 𝐸(𝐺). Let 𝐺′ = 𝐺 − 𝑒. Then 𝐺′ is a spanning subgraph of 𝐺 with

𝐹 (𝐺′, 4) = 𝐹 (𝐺, 4) ≤ 3 and 𝜅′(𝐺′) ≥ 3 by Claim 1(ii). As 𝐺′ ∈ ⟨ℤ3⟩ implies 𝐺 ∈ ⟨ℤ3⟩, Claim 2 fol-

lows from (7). ■

Claim 3. Each of the following holds.

(i) 𝐺+ has no subgraph𝐻+ with 1 < |𝑉 (𝐻+)| < |𝑉 (𝐺+)| such that 𝐹 (𝐻+, 4) = 0.

(ii) 𝜅′(𝐺+) ≥ 5 and 𝐺+ does not have an essentially 5-edge-cut.

(iii) 𝐺+ has no vertex of degree 5.

Proof of Claim 3.

(i) Argue by contradiction to show Claim 3(i) and choose a subgraph𝐻+ of𝐺+ with 1 < |𝑉 (𝐻+)| <|𝑉 (𝐺+)| and 𝐹 (𝐻+, 4) = 0 such that |𝑉 (𝐻+)| minimized. By Claim 2, if 𝑋 = 𝑉 (𝐻+), then

𝐻+ = 𝐺+[𝑋]. If |𝑋| = 2, then by Claim 1(i), Claim 2 and 𝐹 (𝐻+, 4) = 0, we conclude that

𝐸(𝐺[𝑋]) consists of a cut edge of 𝐺, contrary to Claim 1(ii). Hence we assume that |𝑋| ≥ 3.

Let 𝐻 = 𝐻+ − 𝐸1. Then 𝐻 = 𝐺[𝑋]. Since 𝐹 (𝐻+, 4) = 0 and by Claim 2, 𝐹 (𝐻, 4) ≤ |𝐸1| =
𝐹 (𝐺, 4) ≤ 3. If 𝐻 has a cut edge 𝑒, then by (5) and as |𝑉 (𝐻)| ≥ 3, one component of 𝐻 − 𝑒
must be nontrivial and has 4 edge-disjoint spanning trees, contrary to the minimality of |𝑉 (𝐻+)|.
Hence 𝜅′(𝐻) ≥ 2, and so by (7),𝐻 ∈ ⟨ℤ3⟩, contrary to Claim 1(i). This proves Claim 3(i).

(ii) If 𝑊 is a minimal 4-edge-cut or an essential 5-edge-cut of 𝐺+ with 𝐺+
1 and 𝐺+

2 being the two

components of 𝐺+ −𝑊 , then by (5), there exists a nontrivial𝐻+ ∈ {𝐺+
1 , 𝐺

+
2 } with 𝐹 (𝐻+, 4) =

0, contrary to Claim 3(i). This proves Claim 3(ii).

(iii) We argue by contradiction to show Claim 3(iii). Let 𝑣0 be a vertex with 𝑑𝐺+(𝑣0) = 5, 𝐸𝐺+(𝑣0) =
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}, and 𝑣𝑖, 1 ≤ 𝑖 ≤ 5, be vertices with 𝑒𝑖 = 𝑣0𝑣𝑖. As 𝐸𝐺+(𝑣0) may contain parallel

edges, the 𝑣𝑖's are not necessarily distinct. Since 𝐹 (𝐺+, 4) = 0, we may assume that for 1 ≤ 𝑖 ≤ 4,

𝑒𝑖 ∈ 𝐸(𝑇𝑖), and 𝑒5 ∈ 𝐸(𝑇1). By Claim 1(ii), |𝐸1 ∩ 𝐸𝐺+(𝑣0)| ≤ 1, and so we may assume that

𝑒1 ∈ 𝐸(𝐺). By symmetry among 𝑒2, 𝑒3, 𝑒4 and by Claim 1(i)(ii), 𝑒1 has at most one parallel edge,

and thus we may assume 𝑒2 ∈ 𝐸(𝐺) and 𝑣2 ≠ 𝑣1. Let 𝑒′′5 be an edge linking 𝑣1 and 𝑣5 but not

in 𝐸(𝐺). Define 𝐺′′ = 𝐺 − 𝑣0 + 𝑣1𝑣5 if 𝐸1 ∩ 𝐸𝐺+(𝑣0) = ∅, and 𝐺′′ = 𝐺 − 𝑣0 + 𝑣1𝑣2 otherwise.

Let

𝐸′′
1 =

⎧⎪⎨⎪⎩
𝐸1 if 𝐸1 ∩ 𝐸𝐺+(𝑣0) = ∅;

𝐸1 − 𝐸𝐺+(𝑣0) if |𝐸1 ∩ 𝐸𝐺+(𝑣0)| = 1 and 𝑒5 ∉ 𝐸1;

(𝐸1 − 𝐸𝐺+(𝑣0)) ∪ {𝑒′′5 } if 𝐸1 ∩ 𝐸𝐺+(𝑣0) = {𝑒5}.
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As for 𝑖 ∈ {2, 3, 4}, 𝑇𝑖 − 𝑣0 is a spanning tree of 𝐺′′ + 𝐸′′
1 , and (𝑇1 − 𝑣0) + 𝑒′′5 is a spanning tree of

𝐺′′ + 𝐸′′
1 . It follows by |𝐸′′

1 | ≤ |𝐸1| = 3 that 𝐹 (𝐺′′, 4) ≤ 3. Note that |𝑉 (𝐺′′)| + |𝐸(𝐺′′)| < |𝑉 (𝐺)| +|𝐸(𝐺)|. If 𝐺′′ has a cut edge, then as 𝑑𝐺(𝑣0) ≤ 𝑑𝐺+(𝑣0) = 5, 𝐺 has an edge-cut 𝑊 ′ with |𝑊 ′| ≤ 3,

contrary to Claim 1(ii). Thus 𝜅′(𝐺′′) ≥ 2. By (7),𝐺′′ ∈ ⟨ℤ3⟩. Hence𝐺 ∈ ⟨ℤ3⟩ by Lemma 4.2, contrary

to (7). This proves Claim 3. ■

By Claim 3, 𝜅′(𝐺+) ≥ 6, and so by Lemma 2.2(ii) and 𝐹 (𝐺, 4) ≤ 3, we have 𝐺 = 𝐺+ − 𝐸1 ∈ ⟨ℤ3⟩,
contrary to (7). The proof is completed. ■

Theorem 1.7 is an immediate corollary of Theorem 1.9, and we will prove Theorem 1.8 by a simple

discharging argument.

The next lemma follows from arguments of Nash-Williams in [22]. A detailed proof can be found

in Theorem 2.4 of [30].

Lemma 4.3. Let 𝐺 be a nontrivial graph and let 𝑘 > 0 be an integer. If |𝐸(𝐺)| ≥ 𝑘(|𝑉 (𝐺)| − 1), then
𝐺 has a nontrivial subgraph𝐻 with 𝐹 (𝐻, 𝑘) = 0.

Proof of Theorem 1.8. It suffices to show (b). We shall show that every 5-edge-connected essentially

23-edge-connected graph contains 4 edge-disjoint spanning trees. Then Theorem 1.8(b) follows from

Theorem 1.9(ii).

Let𝐺 be a counterexample with |𝐸(𝐺)| minimized. Then 𝐹 (𝐺, 4) > 0 and |𝑉 (𝐺)| ≥ 4. If |𝐸(𝐺)| ≥
4(|𝑉 (𝐺)| − 1), by Lemma 4.3, there exists a nontrivial subgraph 𝐻 with 𝐹 (𝐻, 4) = 0. By definition

of contraction, 𝐺∕𝐻 is 5-edge-connected and essentially 23-edge-connected. By the minimality of 𝐺,

𝐺∕𝐻 has 4 edge-disjoint spanning trees. As𝐻 has 4 edge-disjoint spanning trees, it follows that (see

Lemma 2.1 of [18]) 𝐹 (𝐺, 4) = 0, contrary to the choice of 𝐺. Hence we have

|𝐸(𝐺)| < 4(|𝑉 (𝐺)| − 1). (8)

Since |𝑉 (𝐺)| ≥ 4 and 𝐺 is essentially 23-edge-connected, for any edge 𝑢𝑣 ∈ 𝐸(𝐺), we have

𝑑(𝑢) + 𝑑(𝑣) ≥ 23 + 2. (9)

For integers 𝑖, 𝑘 ≥ 1, define 𝐷𝑖(𝐺) = {𝑣 ∈ 𝑉 (𝐺) ∶ 𝑑𝐺(𝑣) = 𝑖}, 𝐷≤𝑘(𝐺) = ∪𝑖≤𝑘𝐷𝑖(𝐺), and

𝐷≥𝑘(𝐺) = ∪𝑖≥𝑘𝐷𝑖(𝐺). It follows from (9) that 𝐷≤8 is an independent set.

Each vertex begins with charge equal to its degree. If 𝑑(𝑣) ≥ 9 and 𝑣𝑢 ∈ 𝐸(𝐺), then 𝑣 gives charge
𝑑(𝑣)−8
𝑑(𝑣) to 𝑢. Note that 𝐺 may contain parallel edges and the charge runs through each edge adjacent to

𝑣. Clearly, if 𝑣 ∈ 𝐷≥8, then 𝑣 will be left with charge 𝑑(𝑣)(1 − 𝑑(𝑣)−8
𝑑(𝑣) ) = 8.

For any vertex 𝑥 ∈ 𝐷≤7, denote 𝑑(𝑥) = 𝑖 ∈ {5, 6, 7}. By (9), 𝑥 will end with charge at least

𝑖 +
∑

𝑣𝑥∈𝐸(𝐺)

𝑑(𝑣) − 8
𝑑(𝑣)

≥ 𝑖 + 25 − 𝑖 − 8
25 − 𝑖

𝑖 = (42 − 2𝑖)𝑖
25 − 𝑖

≥ min
{
8, 180

19
,
98
9

}
= 8,

a contradiction to (8). ■

We remark that there exist 5-edge-connected and essentially 22-edge-connected graphs that do not

contain 4 edge-disjoint spanning trees. Lowing the constant 23 may require new ideas and more elab-

orate work. As shown in Propositions 3.3 and 3.6, lowing into six would imply Conjectures 1.1 and

1.2.
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5 TWO APPLICATIONS

Recall that a ⟨ℤ3⟩-reduced graph is a graph without nontrivial ℤ3-connected subgraphs. The number

of edges in a ⟨ℤ3⟩-reduced graph is often useful in reduction method and some inductive arguments.

Theorem 1.9, together with Lemma 4.3, establishes an upper bound for the density of a ⟨ℤ3⟩-reduced

graph.

Corollary 5.1. Every ⟨ℤ3⟩-reduced graph on 𝑛 ≥ 3 vertices has at most 4𝑛 − 8 edges.

As defined in [15], a graph 𝐺 is strongly ℤ2𝑠+1-connected if, for every 𝑏 ∶ 𝑉 (𝐺) → ℤ2𝑠+1 with∑
𝑣∈𝑉 (𝐺) 𝑏(𝑣) = 0, there is an orientation 𝐷 such that for every vertex 𝑣 ∈ 𝑉 (𝐺), 𝑑+

𝐷
(𝐺) − 𝑑+

𝐷
(𝐺) ≡

𝑏(𝑣) (mod 2𝑠 + 1). Strongly ℤ2𝑠+1-connected graphs are known as contractible configurations for mod

(2𝑠 + 1)-orientations. The following has recently been obtained.

Proposition 5.2. ( [16]) Every strongly ℤ2𝑠+1-connected graph contains 2𝑠 edge-disjoint spanning
trees.

By the monotonicity of circular flow (see, for example, [7] or [31]), it follows that every graph with a

mod 5-orientation also has a mod 3-orientation. It is not known, in general, whether a strongly ℤ2𝑘+3-

connected graph is also strongly ℤ2𝑘+1-connected. As an application of Proposition 5.2, if a graph 𝐺

is strongly ℤ5-connected graph, then 𝐹 (𝐺, 4) = 0; it then follows from Theorem 1.7 that 𝐺 ∈ ⟨ℤ3⟩.
Hence we obtain the following corollary.

Corollary 5.3. Every strongly ℤ5-connected graph is ℤ3-connected.
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