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GROUP CONNECTIVITY, STRONGLY Zm-CONNECTIVITY, AND
EDGE DISJOINT SPANNING TREES∗

JIAAO LI† , HONG-JIAN LAI† , AND RONG LUO‡

Abstract. Let Zm be the cyclic group of order m ≥ 3. A graph G is Zm-connected if G
has an orientation D such that for any mapping b : V (G) 7→ Zm with

∑
v∈V (G) b(v) = 0, there

exists a mapping f : E(G) 7→ Zm − {0} satisfying
∑

e∈E+
D

(v) f(e) −
∑

e∈E−
D

(v) f(e) = b(v) in Zm

for any v ∈ V (G); and a graph G is strongly Zm-connected if, for any mapping θ : V (G) → Zm

with
∑

v∈V (G) θ(v) = |E(G)| in Zm, there is an orientation D such that d+D(v) = θ(v) in Zm for
each v ∈ V (G). In this paper, we study the relation between Zm-connected graphs and strongly
Zm-connected graphs and show that a graph G is Zm-connected if and only if (m− 2)G is strongly
Zm-connected, where (m−2)G is the graph obtained from G by replacing each edge in G with m−2
parallel edges. We also show that if G is Zm-connected, then (m − 2)G has m − 1 edge disjoint
spanning trees. Those results together with a result by Jaeger et al. [J. Combin. Theory Ser. B,
56 (1992), pp. 165–182] imply that every Z3-connected graph is A-connected for any abelian group
A with |A| ≥ 4. They are applied to determine the exact values of ex(n,Zm) for all m ≥ 3, where
ex(n,Zm) is the largest integer such that every simple graph on n vertices with at most ex(n,Zm)
edges is not Zm-connected, and to present characterizations of graphic and multigraphic sequences
that have Zm-connected realizations.

Key words. nowhere-zero flow, modulo orientation, group connectivity, strongly Zm-connectivity,
graphic sequence realization
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1. Introduction. We consider finite graphs without loops but permitting mul-
tiple edges, and we follow [2, 31] for undefined terms and notation. Throughout this
paper, Z denotes the additive group of the integers. For an integer m ≥ 2, Zm denotes
the set of integers modulo m, as well as the (additive) cyclic group on m elements.

Let D = D(G) be an orientation of a graph G. Following [2], (u, v) denotes an
arc oriented from u to v, and A(D) denotes the set of all arcs in D. For a vertex
v ∈ V (D), define

E−D(v) = {(u, v) ∈ A(D)}, E+
D(v) = {(v, u) ∈ A(D)},

d−D(v) = |E−D(v)|, and d+
D(v) = |E+

D(v)|.

The subscript D may be omitted when D is understood from the context.
Let A be an (additive) abelian group and G be a graph with an orientation

D = D(G). For subsets X ⊆ E(G) and A′ ⊆ A, define F (X,A′) = {f |f : X → A′} to
be the set of all mappings from X into A′, and we use F (G,A′) for F (E(G), A′). To
emphasize the orientation D, we often write a mapping f ∈ F (X,A′) as an ordered
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pair (D, f). When D is understood from the context, we simply use f for (D, f). If
f ∈ F (G,A), define ∂f : V (G)→ A, called the boundary of f , as follows:

for any vertex v ∈ V (G), ∂f(v) =
∑

e∈E+
D(v)

f(e)−
∑

e∈E−D(v)

f(e).

A function b : V (G) → A is an A-zero-sum function if
∑

v∈V (G) b(v) = 0, where 0
denotes the additive identity. The set of all A-zero-sum functions of G is denoted by
Z(G,A).

For any A-zero-sum function b of G, an (A′, b)-flow is a mapping f ∈ F (G,A′)
satisfying ∂f = b. When b = 0, an (A − {0}, 0)-flow is known as a nowhere-zero
A-flow in the literature (see [25, 10, 31], among others). Following [11], if, for any
b ∈ Z(G,A), G always has an (A− {0}, b)-flow, then G is A-connected. The concept
of strongly Z2s+1-connectedness was introduced in [17] (see also [15]). Motivated by
the “θ-orientation” idea of Thomassen et al. (see [24, 18]), we will extend this notion
to strongly Zm-connected graphs to include the case when m is even.

Definition 1.1. Let G be a graph, and let Θ(G,Zm) = {θ : V (G) → Zm |∑
v∈V (G) θ(v) ≡ |E(G)| (mod m)}. A graph G is strongly Zm-connected if, for any

θ ∈ Θ(G,Zm), there is an orientation D such that d+
D(v) ≡ θ(v) (mod m) for every

vertex v ∈ V (G).

Let 〈A〉 and 〈SZm〉 denote the family of all A-connected graphs and the family
of all strongly Zm-connected graphs, respectively.

If a graph G has an orientation D such that for each vertex v ∈ V (G), d+
D(v) −

d−D(v) ≡ 0 (mod m), we say that G admits a modulo m-orientation. For m = 2k + 1,
a modulo (2k + 1)-orientation of G can be also viewed as an orientation D such that
d+

D(v) ≡ −kdG(v) for each v ∈ V (G); and G is strongly Z2k+1-connected can be
equivalently defined as follows (see Proposition 1.3):

for any b ∈ Z(G,Z2k+1), there exists an orientation D of G such that d+
D(v) −

d−D(v) ≡ b(v) (mod 2k + 1) for every v ∈ V (G).
The strongly Z2k+1-connected graphs are also known as contractible configura-

tions for modulo (2k + 1)-orientations (see [15, 17]).
It is known that a connected graph G has a modulo 2k-orientation if and only if

G is eulerian. Since d+
D(v) − d−D(v) = 2d+

D(v) − d(v) ≡ d(v) (mod 2), every possible
Z2k boundary β must satisfy that β(v) ≡ d(v) (mod 2) for every v ∈ V (G). This
motivates us to introduce the following definition.

Definition 1.2. Let Φ(G,Z2k) be the collection of all functions β : V (G) → Z
satisfying that 0 ≤ β(v) ≤ 2k − 1 and β(v) ≡ d(v) (mod 2) for every v ∈ V (G),
and that

∑
v∈V (G) β(v) ≡ 0 (mod 2k). A graph G is uniformly Z2k-connected if, for

any β ∈ Φ(G,Z2k), there is an orientation D such that for every vertex v ∈ V (G),
d+

D(v) − d−D(v) ≡ β(v) (mod 2k). Let 〈UZ2k〉 be the family of all uniformly Z2k-
connected graphs.

In [24], Thomassen commented that an argument of Anton Kotzig implies that
G is strongly Z2-connected if and only if G is connected. The following relations are
observed in Wu’s dissertation.

Proposition 1.3 (see Wu [27]). Let k ≥ 3 be an integer. Then each of the
following holds:

(i) 〈SZk〉 = 〈UZ2k〉.
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(ii) G ∈ 〈SZ2k+1〉 if and only if for any b ∈ Z(G,Z2k+1), there exists an orienta-
tion D of G such that d+

D(v)− d−D(v) ≡ b(v) (mod 2k + 1) for each v ∈ V (G).

In fact, for a given mapping θ ∈ Θ(G,Zk), the orientation D of G with d+
D(v) ≡

θ(v) (mod k) for each v ∈ V (G) is precisely an orientation such that d+
D(v)−d−D(v) ≡

β(v) (mod 2k) with β(v) ≡ 2θ(v) − d(v) (mod 2k) for each v ∈ V (G), where β ∈
Φ(G,Z2k). Similarly, an orientation D of G with d+

D(v) ≡ θ(v) (mod 2k + 1) is an
orientation such that d+

D(v)−d−D(v) ≡ b(v) (mod 2k+ 1) with b(v) = 2θ(v)−d(v) for
each v ∈ V (G), where b ∈ Z(G,Z2k+1). Hence any possible elements β ∈ Φ(G,Z2k) or
b ∈ Z(G,Z2k+1) can be realized by an orientation D via carefully choosing a mapping
θ ∈ Θ(G,Zm), and vice versa. So Proposition 1.3 follows from these arguments.

Jaeger et al. [11] prove the following result concerning the group connectivity and
edge disjoint spanning trees.

Theorem 1.4 (see [11, Theorem 3.1]). Let G be a graph with two edge disjoint
spanning trees. Then G is A-connected for any abelian group with |A| ≥ 4.

Let t ≥ 1 be an integer and G be a graph. Define tG to be the graph obtained
from G by replacing each edge of G with t parallel edges.

Motivated by Theorem 1.4 and Proposition 1.3, we prove the following result.

Theorem 1.5. Let m ≥ 3 be an integer, and let G be a graph. Each of the
following holds:

(i) G ∈ 〈Zm〉 if and only if (m− 2)G ∈ 〈SZm〉.
(ii) If G is Zm-connected, then (m− 2)G has m− 1 edge disjoint spanning trees.

Jaeger et al. [11] pointed out that there exists a Z5-connected graph which is not
Z6-connected. Nevertheless, Theorem 1.5(ii) with m = 3 together with Theorem 1.4
implies the following theorem.

Theorem 1.6. Every Z3-connected graph is A-connected for any abelian group A
with |A| ≥ 4.

This paper is organized as follows. In section 2, we present a couple of other
interesting applications of Theorem 1.5, including Theorem 2.8, which characterizes
degree sequences with Zk-connected realizations and whose proof will be postponed
to the last section. Section 3 is devoted to the proof of Theorem 1.5.

2. Other applications of Theorem 1.5.

2.1. The size of non-A-connected graphs. In [19], motivated by an open
problem (Problem 7.21 of [16]), Luo, Xu, and Yu define ex(n,A) for any integer n
and any finite abelian group A: the largest integer k such that every simple graph on
n vertices with at most k edges is not A-connected, and they prove the following.

Theorem 2.1 (see [19, Theorems 2, 3, and 4]). Let A be an abelian group with
|A| = k ≥ 4, and let n ≥ k be an integer.

(i) If n ≥ 6, then 3n
2 ≤ ex(n,Z3) ≤ 2n− 3.

(ii) ex(n,A) ≤ d (n−1)(k−1)
k−2 e − 1.

They conjecture that the upper bound is the exact value of ex(n,A).

Conjecture 2.2 (see [19]). If n ≥ |A| ≥ 4 or if n ≥ 6 and A = Z3, then
ex(n,A) = d (n−1)(|A|−1)

|A|−2 e − 1.

Wu et al. [28] verify Conjecture 2.2 for some finite cyclic groups.
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Theorem 2.3 (see [28, Theorem 1.5]).
(i) If k is odd, n ≥ k ≥ 4 or if n ≥ 6 and k = 3, then ex(n,Zk) = d (n−1)(k−1)

k−2 e−1.
(ii) If n ≥ 4, then ex(n,Z4) = d 3n−3

2 e − 1.

As a direct consequence of Theorem 1.5(ii), we prove that Conjecture 2.2 holds
for all finite cyclic groups.

Theorem 2.4. ex(n,Zk) = d (k−1)(n−1)
k−2 e − 1 for n ≥ k ≥ 4 or for k = 3 and

n ≥ 6.

Proof. By Theorem 1.5(ii), if G is Zk-connected, then |E(G)| ≥ d (k−1)(|V (G)|−1)
k−2 e.

Thus ex(n,Zk) ≥ d (k−1)(n−1)
k−2 e − 1. Hence the theorem follows from Theorem 2.1.

2.2. Graphic degree sequences with Zk-connected realizations. A se-
quence of n nonnegative integers is graphic (multigraphic, respectively) if it is the
degree sequence of a simple graph (a multigraph, respectively) G, where G is called
a realization of the sequence. It has been extensively studied whether a degree se-
quence has a realization with certain properties. A noticeable application (see [21])
of graph realization with 4-flows has been found in the design of critical partial Latin
squares which leads to the proof of the so-called simultaneous edge-coloring conjec-
ture by Keedwell [12] and Cameron [3]. All graphic sequences which have realizations
admitting a nowhere-zero 3-flow or 4-flow are characterized in [20, 21], respectively.

Wu et al. [28] present a characterization of graphic sequences with Z4-connected
realizations which was conjectured by Luo, Xu, and Yu in [19].

Theorem 2.5 (see [28, Theorem 1.5]). Let d = (d1, d2, . . . , dn) be a graphic
sequence. Then d has a Z4-connected realization if and only if

∑n
i=1 di ≥ 3n− 3 and

min{d1, d2, . . . , dn} ≥ 2.

Sufficient conditions for A-connected realization problems have been proved by
Luo, Xu, and Yu in [19] for |A| = 4, and by Yin, Luo, and Guo [30] for |A| ≥ 5.

Theorem 2.6. Let d = (d1, d2, . . . , dn) be a graphic sequence with min{d1, d2, . . . ,

dn} ≥ 2 and A be an abelian group with |A| ≥ 4. Suppose
∑n

i=1 di ≥ 2d (|A|−1)(n−1)
|A|−2 e.

(i) (see [19]) If |A| = 4, then d has an A-connected realization.
(ii) (see [30]) If |A| ≥ 5, then d has an A-connected realization.

Very recently, Dai and Yin [6] presented a characterization of graphic sequences
with a Z3-connected realization. If a sequence d consists of the terms d1, . . . , dt

having multiplicities m1, . . . ,mt, we may write d = (dm1
1 , . . . , dmt

t ) for convenience.
For n ≥ 5, let

S1(n) = {((n− 1)2, 3n−k−2, 2k) : 0 ≤ k ≤ n− 4 and k ≡ n (mod 2)}

and

S2(n) = {(d1, d2, d3, d4, 2n−4) : n−1 ≥ d1 ≥ d2 ≥ d3 ≥ d4 ≥ 3 and d1+d2+d3+d4 = 2n+4}.

Denote

R(n) =
{
S1(n) ∪ S2(n) if n is odd;
S1(n) ∪ S2(n) ∪ {(n− 1, 3n−1)} if n is even.

Theorem 2.7 (see [6]). Let n ≥ 5, and let d = (d1, d2, . . . , dn) be a nonincreasing
graphic sequence with dn ≥ 2. Then d has a Z3-connected realization if and only if
both

∑n
i=1 di ≥ 4n− 4 and d /∈ R(n).
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In this paper, by applying our main result (Theorem 1.5), we present a charac-
terization of graphic and multigraphic sequences that have Zk-connected realizations
for all k ≥ 4 and k ≥ 3, respectively.

Theorem 2.8. Let k be an integer. Each of the following holds:
(i) For k ≥ 4, a graphic sequence d = (d1, d2, . . . , dn) has a Zk-connected realiza-

tion if and only if both min{d1, d2, . . . , dn} ≥ 2 and
∑n

i=1 di ≥ 2d (k−1)(n−1)
k−2 e.

(ii) For k ≥ 3, a multigraphic sequence d = (d1, d2, . . . , dn) has a Zk-connected
realization if and only if both min{d1, d2, . . . , dn} ≥ 2 and

∑n
i=1 di ≥ 2d (k−1)(n−1)

k−2 e.

3. Proof of Theorem 1.5. The main goal of this section is to prove Theorem
1.5, showing a characterization of Zm-connectedness of a graph G in terms of the
strongly Zm-connectedness of (m − 2)G, as well as a conclusion on the lower bound
of the strength (as defined in [4]) for Zm-connected graphs. Throughout this section,
for each edge e = uv ∈ E(G), we always let [e] denote the set of m− 2 parallel edges
joining u and v in (m − 2)G. We assume that if e1 and e2 are two distinct edges in
E(G) (possibly e1 and e2 are parallel edges in G), then [e1] ∩ [e2] = ∅ in (m− 2)G.

We shall prove Theorem 1.5(i) differently when m has different parities. Applying
Proposition 1.3(ii), we first show Proposition 3.1 below when m = 2k + 1 is an odd
integer.

Proposition 3.1. Let k > 0 be an integer, and let G be a graph. Then G ∈
〈Z2k+1〉 if and only if (2k − 1)G ∈ 〈SZ2k+1〉.

Proof. By Proposition 1.3(ii), it is sufficient to show G ∈ 〈Z2k+1〉 if and only if
for any b ∈ Z((2k− 1)G,Z2k+1), there exists an orientation D of (2k− 1)G such that
d+

D(v)− d−D(v) ≡ b(v) (mod 2k + 1) for each v ∈ V ((2k − 1)G).
We denote Z2k+1 = {0, 1, . . . , 2k} and Z∗2k+1 = {1, . . . , 2k}, and take the conven-

tion of regarding Z2k+1 and Z∗2k+1 as subsets of integers with the arithmetic operations
taken modulo 2k + 1.

Suppose G ∈ 〈Z2k+1〉. Let b ∈ Z(G,Z2k+1). Since G ∈ 〈Z2k+1〉, there exist an
orientation D = D(G) and a mapping f ∈ F ∗(G,Z2k+1) such that ∂f = b. For each
e = (u, v) of D(G) with integral value f(e), let

(1) t(e) =


1
2 (f(e) + 2k − 1) if f(e) is odd;
1
2f(e) + 2k if f(e) is even and f(e) < 0;
1
2f(e)− 1 if f(e) is even and f(e) > 0.

Since 0 < |f(e)| ≤ 2k by (1), we have 0 ≤ t(e) ≤ 2k − 1 for any e ∈ E(G). We shall
give (2k − 1)G an orientation D′ as follows. For each e = (u, v) of D(G), orient t(e)
edges in [e] from u to v, and the rest of the 2k − 1 − t(e) edges in [e] from v to u.
Under the orientation D′ of (2k − 1)G, for any vertex v ∈ V ((2k − 1)G),
(2)

d+
D′ (v)− d−

D′ (v)

=

 ∑
e∈E+

D(G)(v)

t(e) +
∑

e∈E−
D(G)(v)

(2k − 1− t(e))

−
 ∑

e∈E+
D(G)(v)

(2k − 1− t(e)) +
∑

e∈E−
D(G)(v)

t(e)


=

∑
e∈E+

D(G)(v)

[t(e)− (2k − 1− t(e))]−
∑

e∈E−
D(G)(v)

[t(e)− (2k − 1− t(e))]

=
∑

e∈E+
D(G)(v)

[2t(e)− 2k + 1]−
∑

e∈E−
D(G)(v)

[2t(e)− 2k + 1].
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Since 4k ≡ 2k − 1 ≡ −2 (mod 2k + 1), it follows from (1) and (2) that

d+
D′(v)− d−D′(v) ≡

∑
e∈E+

D(G)(v)

f(e)−
∑

e∈E−
D(G)(v)

f(e) ≡ b(v) (mod 2k + 1).

Therefore (2k − 1)G ∈ 〈SZ2k+1〉 by Proposition 1.3(ii).
Conversely, assume (2k − 1)G ∈ 〈SZ2k+1〉. Let b ∈ Z(G,Z2k+1). By Proposition

1.3(ii), (2k− 1)G has an orientation D′ such that for any vertex v, d+
D′(v)− d−D′(v) ≡

b(v) (mod 2k + 1). Let D = D(G) be an orientation of G. For each e = (u, v) in
D(G), let t(e) be the number of edges in [e] oriented from u to v under the orientation
D′. Define f(e) = 2t(e) − (2k − 1) as integers. Since f(e) is odd, f(e) 6= 0. Since
0 ≤ t(e) < 2k, it follows that −(2k − 1) ≤ f(e) ≤ 2k − 1, and so f ∈ F ∗(G,Z2k+1).
By (2) and by the definition of f , we conclude that ∂f(v) = b(v) for every v ∈ V (G).
Hence G ∈ 〈Z2k+1〉. This proves Proposition 3.1.

Next, we are to prove Theorem 1.5(i) when m is even. By Proposition 1.3(i), it
suffices to show that, when m = k is even, G ∈ 〈Zk〉 if and only if (k− 2)G ∈ 〈UZ2k〉.
To justify this, we need the following technical lemma. Throughout the rest of this
section, we adopt the convention of viewing Z2k = {0, 1, 2, . . . , 2k − 1} as a subset
of integers, with the arithmetic operations taken modulo 2k. Similarly, we view
Zk = {0, 1, 2, . . . , k − 1} as a subset of integers, with its arithmetic operations taken
modulo k.

Lemma 3.2. Let G be a graph and k ≥ 1 be an integer. Let D′ = D′(G) be an
orientation of G. The following are equivalent:

(i) G ∈ 〈Z2k〉.
(ii) For any b ∈ Z(G,Z2k), there exists a mapping f1 ∈ F (G,Z2k−{k}) such that

∂f1 = b in Z2k.
(iii) For any b ∈ Z(G,Z2k), there exist an orientation D of G and f ∈ F (G, {0, 1,

. . . , k − 1}) such that ∂f = b in Z2k under orientation D.

Proof. Throughout the proof of this lemma, the mappings b0 and f0 are defined
as follows. Let b0 : V (G) 7→ {0, k} ⊆ Z2k be a mapping such that for any v ∈ V (G),
b0(v) = 0 if dG(v) is even, and b0(v) = k if dG(v) is odd. Since the number of odd
degree vertices in any graph is even, it follows that b0 ∈ Z(G,Z2k). Let f0 = F (G, {k})
be the constant function. Then under any orientation of G, by the definitions of b0
and f0, we have ∂f0 = b0.

Assume that (i) holds. For any b ∈ Z(G,Z2k), let b2 = b − b0 ∈ Z(G,Z2k).
Since G ∈ 〈Z2k〉, there exists f2 ∈ F (G,Z2k − {0}) such that ∂f2 = b2 = b − b0.
Let f1 = f2 + f0. Then ∂f1 = ∂f2 + ∂f0 = b and for every e ∈ E(G), f1(e) =
f2(e) + f0(e) = f2(e) + k 6= k. Thus (ii) holds.

Assume that (ii) holds. Then for any b ∈ Z(G,Z2k), there exists a mapping
f1 ∈ F (G,Z2k − {k}) such that ∂f1 = b in Z2k. We define a new mapping f and a
new orientation D as follows. For each edge e ∈ E(G), if 0 ≤ f1(e) ≤ k−1, then define
f(e) = f1(e) and the orientation of e in D is the same as in D′; if k+1 ≤ f1(e) ≤ 2k−1,
then define f(e) = 2k− f1(e) and oriented e in D by reversing the orientation of e in
D′. Since f1 ∈ F (G,Z2k−{k}) and ∂f1 = b, we have f ∈ F (G, {0, 1, . . . , k− 1}) and,
under the orientation D, ∂f = b in Z2k. Thus (iii) holds.

Assume that (iii) holds. Let b ∈ Z(G,Z2k). Then b − b0 ∈ Z(G,Z2k). By (iii),
there exist an orientationD ofG and f1 ∈ F (G, {0, 1, . . . , k−1}) such that ∂f1 = b−b0.
Let f = f1 + f0. Then as f1 ∈ F (G, {0, 1, . . . , k − 1}), we have f ∈ F ∗(G,Z2k).
Moreover, ∂f = ∂f1 + ∂f0 = (b− b0) + b0 = b. Hence G ∈ 〈Z2k〉 by definition.
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Proposition 3.3. Let k > 0 be an even integer. The following are equivalent:
(i) G ∈ 〈Zk〉.
(ii) (k − 2)G ∈ 〈UZ2k〉.

Proof. Let G ∈ 〈Zk〉, and let β ∈ Φ((k−2)G,Z2k). For any v ∈ V (G), since k−2
is even, β(v) is even and thus β(v) = 2jv for some integer jv with 0 ≤ jv ≤ k − 1.
Define b(v) = jv for each v ∈ V (G). By Definition 1.2, there exists an integer t
such that

∑
v∈V (G) β(v) = 2tk, and so

∑
v∈V (G) b(v) = tk ≡ 0 (mod k). Hence

b ∈ Z(G,Zk). Since G ∈ 〈Zk〉, by Lemma 3.2 there exist an orientation D = D(G)
of G and f ∈ F (G, {0, 1, . . . , k/2 − 1}) such that ∂f = b. Thus f(e) 6= k/2 for any
e ∈ E(G). We will construct an orientation D′ of (k − 2)G as follows. For any edge
e = uv ∈ E(G), if (u, v) ∈ A(D), orient f(e)+k/2−1 edges in [e] from u to v and the
other k/2− 1− f(e) edges in [e] from v to u. Thus, under orientation D′ of (k− 2)G,

d+
D′(w)− d−D′(w) =

∑
e∈E+

D(w)

[(
f(e) +

k

2
− 1
)
−
(
k

2
− 1− f(e)

)]

−
∑

e∈E−D(w)

[(
f(e) +

k

2
− 1
)
−
(
k

2
− 1− f(e)

)]
=

∑
e∈E+

D(w)

2f(e)−
∑

e∈E−D(w)

2f(e)

≡ 2∂f(w) ≡ 2b(w) ≡ β(w) (mod 2k).

Therefore (k − 2)G ∈ 〈UZ2k〉.
Conversely, assume (k−2)G ∈ 〈UZ2k〉. Let b ∈ Z(G,Zk) and β = 2b. Since Zk =

{0, 1, . . . , k− 1} is a subset of integers, we have 0 ≤ β(w) ≤ 2k− 2 for any w ∈ V (G).
Since k − 2 is even, for any w ∈ V (G), β(w) = 2b(w) ≡ 0 ≡ d(k−2)G(w) (mod 2).
As
∑

w∈V (G) b(w) ≡ 0 (mod k), there exists an integer t with
∑

w∈V (G) b(w) = tk,
and so

∑
w∈V (G) β(w) = 2

∑
w∈V (G) b(w) = 2tk ≡ 0 (mod 2k). Hence β ∈ Φ((k −

2)G,Z2k). Since (k − 2)G ∈ 〈UZ2k〉, there exists an orientation D′ of (k − 2)G such
that d+

D′(v)− d−D′(v) ≡ 2b(v) (mod 2k). Thus d+
D′(v)− d−D′(v) is an even integer, and

it follows that for every v ∈ V ((k − 2)G),

1
2

(d+
D′(v)− d−D′(v)) ≡ b(v) (mod k).(3)

For each edge e = uv ∈ E(G), let t(e) be the number of edges in [e] oriented from
u to v in D′. We are to construct an orientation D of G by orienting e from u to v
if and only if t(e) ≥ k

2 − 1. For each e = (u, v) ∈ A(D), define f(e) = t(e) − k
2 + 1.

Then 0 ≤ f(e) ≤ k
2 − 1, and hence f ∈ F (G, {0, 1, . . . , k/2 − 1}). Moreover, for any
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w ∈ V (G),

(4)

∂f(w) =
∑

e∈E+
D(w)

f(e)−
∑

e∈E−D(w)

f(e)

=
∑

e∈E+
D(w)

(
t(e)− k

2
+ 1
)
−

∑
e′∈E−D(w)

(
t(e′)− k

2
+ 1
)

=
1
2

 ∑
e∈E+

D(w)

(t(e)− (k − 2− t(e))) +
∑

e′∈E−D(w)

((k − 2− t(e′))− t(e′))


=

1
2

 ∑
e∈E+

D(w)

t(e) +
∑

e′∈E−D(w)

(k − 2− t(e′))

−

 ∑
e∈E+

D(w)

(k − 2− t(e)) +
∑

e′∈E−D(w)

t(e′)

 .
Under the orientation D′ of (k − 2)G, we have

d+
D′(w) =

∑
e∈E+

D(w)

t(e) +
∑

e′∈E−D(w)

(k − 2− t(e′)),(5)

d−D′(w) =
∑

e∈E+
D(w)

(k − 2− t(e)) +
∑

e′∈E−D(w)

t(e′).(6)

Combining (5), (6), (4), and (3), we have for any w ∈ V (G),

∂f(w) =
1
2

(d+
D′(w)− d−D′(w)) ≡ b(w) (mod k).

Since f ∈ F (G, {0, 1, . . . , k/2− 1}), we conclude that G ∈ 〈Zk〉 by Lemma 3.2.

Theorem 1.5(i) now follows from Propositions 3.1 and 3.3. We will prove Theorem
1.5(ii).

For an edge set X ⊆ E(G), the contraction G/X is the graph obtained from G
by identifying the two ends of each edge in X and then deleting the resulting loops.
If H is a subgraph of G, then we use G/H for G/E(H). As in [2], c(G) denotes
the number of components of G. Let H be a graph with |E(H)| > 1. Following
[4, 9], define g(H) = |E(H)|

|V (H)|−c(H) . The strength of G, as defined in [4, 5], is η(G) =
min{g(G/X)|X ⊆ E(G) with V (G[X]) 6= V (G)}. Let τ(G) be the maximum number
of edge disjoint spanning trees in G. A fundamental theorem proved independently
by Nash-Williams and Tutte implies the following.

Theorem 3.4 (see Nash-Williams [22] and Tutte [26]). For a connected graph
G, τ(G) = bη(G)c.

By the definitions of τ and 〈SZk〉, we note that τ(K1) =∞ and K1 ∈ 〈SZk〉 and
make the following observation.

Observation 3.5. Let k ≥ 1 be an integer, and let T k = {G|τ(G) ≥ k}. If
F = 〈SZk〉 or if F = T k, then each of the following holds:
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(i) If G ∈ F and if e ∈ E(G), then G/e ∈ F .
(ii) If H is a subgraph of G and if both H and G/H are in F , then G ∈ F .

Proof. The proof is routine when F = T k, as k edge disjoint spanning trees of G
can be found by combining the k edge disjoint spanning trees of G/H and of H. For
the proofs of Observation 3.5(i)–(ii) when F = 〈SZk〉, it is more convenient to apply
Proposition 1.3(i) with 〈SZk〉 = 〈UZ2k〉.

Assume that G ∈ 〈UZ2k〉. Let e = uv ∈ E(G), and denote w to be the contracted
vertex corresponding to e in G/e. For any β ∈ Φ(G/e,Z2k), define a mapping β′ :
V (G) 7→ Z2k to be β′(x) = β(x) for any x ∈ V (G) − {u, v}, β′(u) = d(u) and
β′(v) = β(w)− d(u) in Z2k. Then β′(v) ≡ β(w)− d(u) ≡ (d(v) + d(u))− d(u) ≡ d(v)
(mod 2). Moreover, we have

∑
x∈V (G) β

′(x) ≡
∑

x∈V (G/e) β(x) ≡ 0 (mod 2k). Hence
β′ ∈ Φ(G,Z2k). As G ∈ 〈UZ2k〉, there exists an orientation D′ of G such that
d+

D′(x)− d−D′(x) ≡ β′(x) (mod 2k) for any x ∈ V (G). By contracting the edge e, this
results in an orientation D of G/e such that for any x ∈ V (G/e), d+

D(x)−d−D(x) ≡ β(x)
(mod 2k). Hence G/e ∈ 〈UZ2k〉 by definition. This proves Observation 3.5(i) for
F = 〈SZk〉. The proof of Observation 3.5(ii) for F = 〈SZk〉 is similar and thus
omitted.

A graph is nontrivial if it contains at least one nonloop edge. The next lemma
follows from the arguments of Nash-Williams in [23]. A detailed proof can be found
in Theorem 2.4 of [29].

Lemma 3.6. Let G be a nontrivial graph, and let k > 0 be a integer. If g(G) ≥ k,
then G has a nontrivial subgraph H with τ(H) ≥ k.

The following theorem is a special case of Theorem 4 in [4].

Theorem 3.7 (see Catlin et al. [4]). Let s, t be integers with s ≥ t > 0 and H
be a nontrivial graph; then η(H) ≥ s

t if and only if τ(tH) ≥ s.

By Theorem 3.7, Theorem 1.5(ii) is equivalent to the following.

Theorem 3.8. Let k ≥ 3 be an integer and G be a Zk-connected graph on n ≥ 2
vertices. Each of the following holds:

(i) η(G) ≥ k−1
k−2 .

(ii) In particular, |E(G)| ≥ d (k−1)(n−1)
k−2 e.

By the definition of η, Theorem 3.8(ii) follows from Theorem 3.8(i). By Theorems
3.4 and 3.7, Theorem 3.8 follows from Theorem 1.5(i) and Proposition 3.9 below.

Proposition 3.9. Let k ≥ 1 be an integer. If G ∈ 〈SZk〉, then τ(G) ≥ k − 1.

Proof. Since all graphs in 〈SZk〉 are connected, we may assume k ≥ 2. Let G
be a counterexample with |V (G)|+ |E(G)| minimized and with n = |V (G)| > 1. We
first claim that G has no nontrivial subgraph H ∈ T k−1. Otherwise, let H ∈ T k−1
be a nontrivial subgraph of G. Then by Observation 3.5(i), G/H ∈ 〈SZk〉. By
the minimality of G, G/H ∈ T k−1. Hence by Observation 3.5(ii), G ∈ T k−1, a
contradiction to the assumption that G is a counterexample. Therefore G does not
have a nontrivial subgraph in T k−1. By Lemma 3.6, we have g(G) < k − 1. Thus
|E(G)| < (k − 1)(n− 1) since G is connected.

Let V (G) = {v1, v2, . . . , vn}. Set θ(vi) = k − 1 if 1 ≤ i ≤ n − 1, and θ(vn) =
|E(G)|−

∑n−1
i=1 θ(vi). Then θ ∈ Θ(G,Zk). Since G ∈ 〈SZk〉, there exists an orientation

D of G such that for any v ∈ V (G), d+
D(v) ≡ θ(v) (mod k). Thus for each 1 ≤ i ≤

n − 1, dG(vi) ≥ d+
D(vi) ≥ k − 1, and so |E(G)| ≥

∑n−1
i=1 d

+(vi) ≥ (k − 1)(n − 1), a
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contradiction to the fact that |E(G)| < (k − 1)(n − 1). This completes the proof of
the proposition.

4. Proof of Theorem 2.8. We will prove Theorem 2.8 in this section. By
Theorem 3.8, if G is a Zk-connected realization of d = (d1, d2, . . . , dn), then

∑n
i=1 di =

2|E(G)| ≥ 2d (k−1)(n−1)
k−2 e. Hence, together with Theorem 2.6, Theorem 2.8(i) follows.

It remains to prove Theorem 2.8(ii). The following former results and newly developed
lemmas will be needed in our arguments.

Theorem 4.1 (see Hakimi [8]). If d = (d1, d2, . . . , dn) is a nonincreasing integral
sequence with n ≥ 2 and dn ≥ 0, then d is a multigraphic sequence if and only if∑n

i=1 di is even and d1 ≤ d2 + · · ·+ dn.

Theorem 4.2 (see Boesch and Harary [1]). Let d = (d1, . . . , dn) be a nonin-
creasing integral sequence with n ≥ 2 and dn ≥ 0. Let j be an integer with 2 ≤ j ≤ n
such that dj ≥ 1. Then the sequence (d1, d2, . . . , dn) is multigraphic if and only if the
sequence (d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn) is multigraphic.

Lemma 4.3 (see [13, Proposition 3.2 and Lemma 3.3] and [14, Lemma 2.1]). Let
k ≥ 3 be an integer, G be a graph, and H be a subgraph of G.

(i) If H ∈ 〈Zk〉 and G/H ∈ 〈Zk〉, then G ∈ 〈Zk〉.
(ii) (see also [11]) A cycle of length n is in 〈Zk〉 if and only if n ≤ k − 1.
(iii) If G is connected and every edge lies in a cycle of length at most k− 1, then

G is Zk-connected.

Lemma 4.4. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence
with dn ≥ 2 and

∑n
i=1 di = 4n− 4. Then d has a Z3-connected realization.

Proof. We argue by induction on n. If 2 ≤ n ≤ 4, then all the graphs whose
degree sequences satisfy the hypothesis of Lemma 4.4 are depicted in Figure 1 below.

(a) (2,2) (b) (2,2,4) (c) (2,3,3) (d) (2,2,2,6)

(e) (2,2,3,5) (f) (2,2,4,4) (g) (2,3,3,4) (h) (3,3,3,3)

Fig. 1. Multigraphic degree sequences and their Z3-connected realization when 2 ≤ n ≤ 4.

It follows from Lemma 4.3 that every graph in Figure 1 is Z3-connected, and so
Lemma 4.4 holds if 2 ≤ n ≤ 4. We now assume that n ≥ 5 and that the lemma
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holds for smaller values of n. Since dn ≥ 2 and
∑n

i=1 di = 4n − 4, we conclude that
2 ≤ dn ≤ 3.

Case 1. dn = 2.
Since n ≥ 5 and

∑n
i=1 di = 4n−4, we have d1 ≥ 4. Let d′ = (d1−2, d2, . . . , dn−1).

If d′ is a multigraphic sequence, d′ has a Z3-connected realization H such that v1 ∈
V (H) has degree d1−2 in H by induction hypothesis. Construct a new graph G from
H by adding a new vertex vn /∈ V (H) and two new parallel edges joining v1 and vn.
Then G is a realization of d. Moreover, since H ∈ 〈Z3〉 and since G/H is a cycle of
length 2, by Lemma 4.3, G is a Z3-connected realization of d. Hence we assume that
d′ is not multigraphic. By Theorem 4.1, we must have d2 > d1−2+

∑n−1
i=3 di. Since d

is a nonincreasing sequence and n ≥ 5, we have d2 > d1− 2 + 2 + 2 = d1 + 2 ≥ d2 + 2,
a contradiction. This shows that d must have a Z3-connected realization in Case 1.

Case 2. dn = 3.
By
∑n

i=1 di = 4n− 4, we have dn−3 = dn−2 = dn−1 = dn = 3 and 4 ≤ d1 ≤ n− 1.
Thus max{d1−2, d2} ≤ n−1 ≤ 3n−11 ≤ d1−2+d2−max{d1−2, d2}+

∑n−2
i=3 di. Let

d∗ = (d1 − 2, d2, . . . , dn−2). Then by Theorem 4.1, d∗ is multigraphic. By induction,
d∗ has a Z3-connected realization H with a vertex v1 ∈ V (H) having degree d1− 2 in
H. Construct a new graph G from H by adding two new vertices vn−1, vn /∈ V (H),
two new parallel edges joining vn−1 and vn, and two new edges v1vn−1, v1vn. By
Lemma 4.3, G is a Z3-connected realization of d since H ∈ 〈Z3〉 and G/H ∈ 〈Z3〉.
This proves the lemma.

A graph G is supereulerian if G contains a spanning eulerian subgraph.

Lemma 4.5 (see [7, Theorem 1.6]). Let d = (d1, d2, . . . , dn) be a nonincreasing
multigraphic sequence. Then d has a supereulerian realization if and only if either
n = 1 and d1 = 0, or n ≥ 2 and dn ≥ 2.

Lemma 4.6. Let n ≥ 2 and k ≥ 4. Let d = (d1, d2, . . . , dn) be a nonincreasing
integral sequence with dn ≥ 2. Each of the following holds:

(i) If d is multigraphic with n ≤ k, and
∑n

i=1 di ≥ 2d (k−1)(n−1)
k−2 e, then d has a

Zk-connected realization.
(ii) If

∑n
i=1 di = 2d (k−1)(n−1)

k−2 e, then d is multigraphic and has a Zk-connected
realization.

Proof. (i) Assume n ≤ k. By Lemma 4.5, d has a supereulerian realization G.
Thus G is 2-edge-connected with |V (G)| ≤ k. If n ≤ k − 1, then every edge lies in a
cycle of length at most k− 1. Thus by Lemma 4.3(iii), G ∈ 〈Zk〉. Now assume n = k.
If G contains a cycle of length 2, say C, then G/C remains 2-edge-connected and has
k−1 vertices. Thus G/C ∈ 〈Zk〉. By Lemma 4.3(ii) and (i), G ∈ 〈Zk〉. Hence we may
further assume that G is simple. Since

∑n
i=1 di ≥ 2d (k−1)(n−1)

k−2 e, G is not a cycle. It
follows that every edge of G is in a cycle of length at most k− 1. By Lemma 4.3(iii),
G ∈ 〈Zk〉. This proves (i).

(ii) Since dn ≥ 2 and
∑n

i=1 di = 2d (k−1)(n−1)
k−2 e, we have d1 = 2d (k−1)(n−1)

k−2 e −∑n
i=2 di ≤ 2d (k−1)(n−1)

k−2 e− 2(n− 1) ≤ 2(n− 1) ≤
∑n

i=2 di. Thus by Theorem 4.1, d is
multigraphic.

Now we show that d has a Zk-connected realization. By (i), we may assume
n ≥ k + 1.

We first prove the following statement:

(7) dn = · · · = dn−(k−3) = 2 and d1 ≥ 3.
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Since nd1 ≥
∑n

i=1 di = 2d (k−1)(n−1)
k−2 e ≥ 2n − 2 + 2(n−1)

k−2 > 2n, we have d1 ≥ 3.
Suppose to the contrary that dn−(k−3) ≥ 3. Then, since n ≥ k + 1,

n∑
i=1

di ≥ 2
⌈

3(n− (k − 3)) + 2(k − 3)
2

⌉
= 2
⌈

(k − 1)(n− 1)
k − 2

+
(k − 4)n
2(k − 2)

+
k − 1
k − 2

− k − 3
2

⌉
≥ 2
⌈

(k − 1)(n− 1)
k − 2

+
4k − 12
2(k − 2)

⌉
≥ 2
⌈

(k − 1)(n− 1)
k − 2

+ 1
⌉
> 2
⌈

(k − 1)(n− 1)
k − 2

⌉
,

a contradiction to the assumption that
∑n

i=1 di = 2d (k−1)(n−1)
k−2 e. Since d is nonin-

creasing, dn = · · · = dn−(k−3) = 2. This proves (7).
We argue by induction on n to prove Lemma 4.6(ii). Assume that n ≥ k + 1 ≥ 5

and Lemma 4.6 holds for smaller values of n.
Case 1. d2 ≥ 3.
Let d′ = (d1 − 1, d2 − 1, d3, . . . , dn−(k−2)). By (7), we have

n−(k−2)∑
i=1

d′i = 2
⌈

(k − 1)(n− 1)
k − 2

⌉
− 2− 2(k − 2) = 2

⌈
(k − 1)(n− (k − 2)− 1)

k − 2

⌉
.

Since mini≤n−(k−2){d′i} ≥ min{d2 − 1, dn−(k−2)} ≥ 2, by induction, d′ is a multi-
graphic sequence with a Zk-connected realizationG′ with V (G′) = {v1, v2, . . . , vn−(k−2)}
such that dG′(vi) = d′i for each i = 1, 2, . . . , n− k + 2.

Construct a new graph G from G′ by adding a new path P = vn−(k−3) . . . vn with
V (P )∩ V (G′) = ∅, and two new edges vnv1, vn−(k−3)v2. Then G is a realization of d.
Moreover, since G′ ∈ 〈Zk〉 and G/G′ is a cycle of length k− 1, it follows from Lemma
4.3 that G is a Zk-connected realization of d.

Case 2. d2 = 2.
Since d2 = · · · = dn = 2 and

∑n
i=1 di must be even, we have d1 ≥ 4 by (7). Let

d∗ = (d1 − 2, d2, . . . , dn−(k−2)). Since

n−(k−2)∑
i=1

d′i = 2
⌈

(k − 1)(n− (k − 2)− 1)
k − 2

⌉
and mini≤n−(k−2){d∗i } ≥ min{d1−2, dn−(k−2)} ≥ 2, by induction, d∗ is a multigraphic
sequence and has a Zk-connected realizationG∗. Denote V (G∗) = {v1, v2, . . . , vn−(k−2)},
where dG∗(v1) = d1−2 and dG∗(vi) = di for each i = 2, . . . , n−(k−2). Construct a new
graph G from G∗ by adding a new path P = vn−(k−3) . . . vn with V (P ) ∩ V (G∗) = ∅,
and two new edges vnv1, vn−(k−3)v1. Then G is a realization of d. Moreover, since
G∗ ∈ 〈Zk〉 and G/G∗ is a cycle of length k − 1, by Lemma 4.3, G is a Zk-connected
realization of d. This completes the proof of Lemma 4.6.

Proof of Theorem 2.8(ii). Let m =
∑n

i=1 di. Since d is multigraphic, m ≡ 0 (mod
2). We argue by induction on m. By Lemmas 4.4 and 4.6, Theorem 2.8(ii) holds if
m = 2d (k−1)(n−1)

k−2 e. Assume that m ≥ 2d (k−1)(n−1)
k−2 e + 2, and that Theorem 2.8(ii)

holds for smaller values of m.
If d2 ≥ 3, then by Theorem 4.2, d′ = (d1 − 1, d2 − 1, d3, . . . , dn) is multigraphic.

By induction, d′ has a Zk-connected realization G′. Denote V (G′) = {v1, v2, . . . , vn}
such that dG′(v1) = d1 − 1, dG′(v2) = d2 − 1, and dG′(vi) = di for each i = 3, . . . , n.
Let G = G′ + v1v2. Since G′ is Zk-connected, G is a Zk-connected realization of d.

If d2 = 2, then d2 = d3 = · · · = dn = 2. Thus d = (d1, . . . , dn) = (m −
2(n − 1), 2, . . . , 2). Let t = 1

2d1 = m−2(n−1)
2 . Since m ≡ 0 (mod 2), t is an integer.
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By Theorem 4.1, d1 ≤
∑n

i=2 di = 2(n − 1). Thus n − 1 ≥ 1
2d1 = t. Since m ≥

2d (k−1)(n−1)
k−2 e+ 2, we have

2t(k − 1) = (m− 2(n− 1))(k − 1) = m(k − 1)− 2(n− 1)(k − 1)(8)
= m+ [(k − 2)m− 2(n− 1)(k − 1)] > m = 2t+ 2(n− 1).

By (8), there exist t integers k − 1 ≥ s1 ≥ s2 ≥ · · · ≥ st ≥ 2 such that
∑t

i=1 si = m
2 .

Let C1, C2, . . . , Ct be a set of disjoint cycles such that Ci has length si. For each
cycle Ci, we designate a vertex ui ∈ V (Ci). Construct a graph G by identifying
u1, u2, . . . , ut into a single vertex labeled as v1. Then v1 has degree 2t in G, and
|V (G)| =

∑t
i=1(|V (Ci)| − 1) + 1 =

∑t
i=1 si − t + 1 = m

2 − t + 1 = n. Label the
other vertices in V (G) − {v1} by v2, v3, . . . , vn, respectively. Then for each j ≥ 2,
dG(vj) = 2, so G is a realization of d = (d1, . . . , dn) = (m− 2(n− 1), 2, . . . , 2). Since
si ≤ k−1, every edge in G lies in a cycle of length at most k−1, Therefore by Lemma
4.3, G is Zk-connected. This completes the proof of Theorem 2.8(ii).
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