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a b s t r a c t

Let k be a positive integer. An adjacent vertex distinguishing (for short, AVD) total
k-coloring φ of a graph G is a proper total k-coloring of G such that no pair of adjacent
vertices have the same set of colors, where the set of colors at a vertex v is {φ(v)} ∪

{φ(e) : e is incident to v}. Zhang et al. conjectured in 2005 that every graphwithmaximum
degree ∆ has an AVD total (∆ + 3)-coloring. Recently, Papaioannou and Raftopoulou
confirmed the conjecture for 4-regular graphs. In this paper, by applying the Combinatorial
Nullstellensatz, we verify the conjecture for all graphs with maximum degree 4.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and undirected. We follow the standard notation and terminology as can
be found in [6]. Let G = (V (G), E(G)) be a graph and T (G) = V (G) ∪ E(G). For a vertex x ∈ V (G), we use NG(v) and EG(v) to
denote the set of vertices adjacent to v and the set of edges incident to v, respectively. An ℓ-vertex or ℓ−-vertex of G is a
vertex of degree ℓ or at most ℓ, respectively. Let Vℓ(G) and Vℓ− (G) be the sets of ℓ-vertices and ℓ−-vertices, respectively, in
G. We also use Vℓ and Vℓ− for short if the graph G is understood in context. The maximum degree of G is denoted by∆(G).

Let k be a positive integer and [k] = {1, 2, . . . , k}. A mapping φ : T (G) → [k] is a proper total k-coloring if, for any
two adjacent or incident elements z1, z2 ∈ T (G), it is φ(z1) ̸= φ(z2). Let Cφ(v) = {φ(v)} ∪ {φ(e) : e ∈ EG(v)} and mφ(v) =

φ(v) +
∑

e∈EG(v)
φ(e) for any vertex v ∈ V (G). A proper total k-coloring φ of G is adjacent vertex distinguishing (for short,

AVD) if Cφ(u) ̸= Cφ(v) whenever uv ∈ E(G). The AVD total chromatic number χ t
a(G) is the smallest integer k such that G has

an AVD total k-coloring.
The AVD total coloring is related to vertex-distinguishing edge coloringwhich requires that every pair of vertices receives

different the sets of colors. The vertex-distinguishing edge coloring was introduced by Burris and Schelp [7], and indepen-
dently by Černý et al. [9] (under the notion of observability). This type of coloring has been well studied over the last decade
(see, for example, [2–5]). It was later extended to require only adjacent vertices to be distinguished by Zhang et al. [14],
which was in turn extended to total coloring [13].

Zhang et al. [13] determined χ t
a(G) for some basic graphs such as complete graphs and complete bipartite graphs and

made the following conjecture.

Conjecture 1.1 ([13]). For any graph G, χ t
a(G) ≤ ∆(G) + 3.
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Chen [8] andWang [12], independently, confirmed Conjecture 1.1 for graphs with maximum degree 3. Later, Hulgan [10]
presented a concise proof on this result. Recently Papaioannou and Raftopoulou [11] verified Conjecture 1.1 for 4-regular
graphs.

Theorem 1.2 ([11]). For any 4-regular graph G, χ t
a(G) ≤ 7.

The aim of this paper is to extend Theorem 1.2 from 4-regular graphs to graphs with maximum degree 4. We prove the
following result.

Theorem 1.3. For any graph G with maximum degree 4, χ t
a(G) ≤ 7.

We use a polynomial method based on the Combinatorial Nullstellensatz due to Alon [1]. In fact, in Section 3, we prove
a stronger result as follows.

Theorem 1.4. Every graph with maximum degree 4 has a proper total 7-coloring satisfying:

(i) For any two adjacent 4-vertices u and v, Cφ(u) ̸= Cφ(v);
(ii) For any two adjacent 3−-vertices u and v, mφ(u) ̸= mφ(v).

Remark. Ifmφ(u) ̸= mφ(v), then the sets of colors must be different. Also, in the definition of AVD total coloring it requires
that any two adjacent vertices have different color sets. Theorem1.4 does not cover a 4-vertex that is adjacent to a 3−-vertex.
Of course, in a proper total coloring, two adjacent vertices of different degrees also have different color sets.

2. A polynomial associated with AVD total coloring

Let G be a graph with maximum degree 4 and H be an induced subgraph in G[V3− ]. An H-partial AVD total 7-coloring of G
is a mapping φ : T (G) − T (H) → [7], satisfying the following two conditions:

(a) For any two adjacent or incident elements z1, z2 ∈ T (G) − T (H), φ(z1) ̸= φ(z2);
(b) For uv ∈ E(G − H), Cφ(u) ̸= Cφ(v) if dG(u) = dG(v) = 4, andmφ(u) ̸= mφ(v) if dG(u) ≤ 3 and dG(v) ≤ 3.

H is called reducible if every H-partial AVD total 7-coloring can be extended to a proper total coloring of G satisfying the
conditions of Theorem 1.4.Wewill use a polynomial method to prove Theorem 1.4. For this, we need the following theorem,
known as the Combinatorial Nullstellensatz due to Alon [1].

Theorem 2.1 ([1]). Let F be an arbitrary field and P ∈ F[x1, . . . , xn]with degree deg(P) =
∑n

j=1ij, where each ij is a nonnegative
integer. If the coefficient of the monomial xi11 . . . x

in
n in P is nonzero, and if S1, . . . , Sn are subsets of Fwith |Sj| > ij, then there are

s1 ∈ S1, . . . , sn ∈ Sn such that P(s1, . . . , sn) ̸= 0.

Let H be an induced subgraph of G[V3− ]. Denote V (H) = {v1, . . . , vh} and E(H) = {e1, . . . , ek}. Each element z ∈

T (H) = V (H) ∪ E(H) is associated with a variable xz . Let D be an arbitrary orientation of H and φ be an H-partial AVD total
7-coloring of G. For each vertex v ∈ V (H), N+

D (v) is the set of arcs with v as the initial vertex. For each vertex v ∈ V (H), let
µH (v) = xv +

∑
e∈EH (v)xe and

PD,φ(H; v) =

∏
u∈NG(v)\V (H)

⎛⎝(xv − φ(u))(xv − φ(uv))
∏

e∈EH (v)

(xe − φ(uv))

⎞⎠
·

∏
u∈(V3−∩NG(v))\V (H)

⎛⎝µH (v) +

∑
e∈EG(v)\EH (v)

φ(e) − φ(u) −

∑
e∈EG(u)

φ(e)

⎞⎠
·

∏
u∈N+

D (v)

(xv − xu)

⎛⎝µH (v) +

∑
e∈EG(v)\EH (v)

φ(e) − µH (u) −

∑
e∈EG(u)\EH (u)

φ(e)

⎞⎠
·

∏
e∈EH (v)

(xv − xe)
∏

ei,ej∈EH (v)
i<j

(xei − xej ).

Remark. InPD,φ(H; v), the first product assures that v and every edge e ∈ EH (v) would have different colors than its incident
elements in T (G)−T (H); while the last two products (together with some parts of the third product) assure that v and every
edge e ∈ EH (v) would have different color than its incident elements in T (H). Moreover, the second and third products
guarantee mφ(u) ̸= mφ(v) for any vertex u ∈ V3− ∩ NG(v).
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By the Combinatorial Nullstellensatz (Theorem 2.1), we need to find the existence of certain monomials of degree deg(P)
with nonzero coefficient in the expansion of PD,φ(H; v). Since φ(x) is a constant for each element x ∈ T (G) − T (H), one can
drop each constant term from PD,φ(H; v) to only consider its homogeneous part which can be expressed as follows.

P̃D(H; v) =

⎛⎝x2v
∏

e∈EH (v)

xe

⎞⎠|NG(v)\NH (v)|

(µH (v))|(V3−∩NG(v))\V (H)|

·

∏
u∈N+

D (v)

(xv − xu)(µH (v) − µH (u))
∏

e∈EH (v)

(xv − xe)
∏

ei,ej∈EH (v)
i<j

(xei − xej ).

Note that
∏
v∈V (H)PD,φ(H; v) and

∏
v∈V (H)P̃D(H; v) are independent of the orientation D. Thus we define the following two

polynomials.

Pφ(H) = Pφ(xv1 , xv2 , . . . , xvh , xe1 , xe2 , . . . , xek ) =

∏
v∈V (H)

PD,φ(H; v),

P̃(H) = P̃(xv1 , xv2 , . . . , xvh , xe1 , xe2 , . . . , xek ) =

∏
v∈V (H)

P̃D(H; v).

Lemma 2.2. Let G be a graph with maximum degree 4 and let H be an induced subgraph of G[V3− ] such that there exists an
H-partial AVD total 7-coloring of G. If P̃(H) has a monomial

∏
z∈T (H)x

jz
z with nonzero coefficient such that jz ≤ 6 for each

z ∈ T (H) and deg(P̃(H)) =
∑

z∈T (H)jz , then H is reducible.

Proof. Let
∏

z∈T (H)x
jz
z be a monomial of P̃(H) with nonzero coefficient such that deg(P̃(H)) =

∑
z∈T (H)jz and jz ≤ 6 for

each z ∈ T (H). Let φ be an H-partial AVD total 7-coloring of G. Then
∏

z∈T (H)x
jz
z is also a monomial of Pφ(H) such that∑

z∈T (H)jz = deg(Pφ(H)) and its coefficient in Pφ(H) is the same as its coefficient in P̃(H). Thus by Theorem 2.1, for each
z ∈ T (H), there is an integer az ∈ [7] such that

Pφ(av1 , av2 , . . . , avh , ae1 , ae2 , . . . , aek ) ̸= 0.

Hence φ can be extended to a coloring of G satisfying the conditions of Theorem 1.4 by coloring each z ∈ T (H) with az . By
definition, H is reducible. ■

The following lemma is needed in the proof of the main result and its proof is straightforward and thus omitted.

Lemma 2.3. Let F be an arbitrary field and P,Q , R be three polynomials in F[x1, . . . , xn] with P = Q · R. If the coefficient of the
monomial xi11 . . . x

in
n in P is nonzero and deg(P) =

∑n
j=1ij, then there are nonnegative integers i′j ≤ ij for each j ∈ [n] such that

deg(Q ) =
∑n

j=1i
′

j and the coefficient of the monomial x
i′1
1 . . . x

i′n
n in Q is also nonzero.

3. Graphs with∆ = 4

In this section, we will prove Theorem 1.4. Let us start with the special case of graphs in which V3− is an independent set
of vertices. Note that if V3− is an independent set of vertices, then any AVD total 7-coloring of G satisfies the two conditions
of Theorem 1.4.

Lemma 3.1. Let G be a connected graph with maximum degree 4. If V3− is an independent set of vertices in G, then G has an AVD
total 7-coloring.

Proof. For i ∈ {1, 2, 3, 4}, let Gi be a copy of G, and use vi ∈ V (Gi) to denote the copy of v ∈ V (G) in Gi. Let G′
= ∪

4
i=1Gi.

Then we augment G′ to a new graph G′′ by adding some new edges to G′ such that for each v ∈ V (G), the induced subgraph
G′′

[{v1, v2, v3, v4}] is (4− dG(v))-regular in G′′. It is obvious that G′′ is a 4-regular graph. By Theorem 1.2, G′′ has an AVD total
7-coloring ψ . Since V3− is an independent set of G, ψ also induces an AVD total 7-coloring of G1 (and thus of G) satisfying
the two conditions of Theorem 1.4. ■

Outline of the proof of Theorem 1.4. The proof is based on a minimal counterexample. By the minimality of G, we first
show that no connected induced subgraph in G[V3− ] with at least two vertices is reducible. Applying this claim repeatedly,
we show that G[V3− ] contains certain configurations. Finally we prove that such configurations are indeed reducible, which
contradicts to the first claim.

Proof of Theorem 1.4. Suppose that Theorem 1.4 does not hold. Let G be a counterexample to Theorem 1.4 such that |E(G)|
is minimum. Obviously, G is connected and V3− is not an independent set of G by Lemma 3.1.
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Fig. 1. H and the corresponding variables in Claim 3.3.

Claim 3.1. Let H be a connected subgraph induced by at least two vertices of V3− . Then G has an H-partial AVD total 7-coloring
and thus H is not reducible.

Proof. Since H is connected and has at least two vertices, it is |E(H)| ≥ 1. By the minimality of G, G− E(H) has a proper total
7-coloring ψ satisfying

(i) For any two adjacent 4-vertices u and v, Cψ (u) ̸= Cψ (v);
(ii) For any two adjacent 3−-vertices u and v,mψ (u) ̸= mψ (v).

Uncoloring every vertex in V (H), we obtain a proper total 7-coloring φ on T (G)− T (H). It is easy to see that φ is an H-partial
AVD total 7-coloring of G. Since G is a counterexample, φ cannot be extended to an AVD total 7-coloring of G satisfying the
conditions of Theorem 1.4 and thus H is not reducible. ■

The following claim is a direct corollary of Claim 3.1 and Lemma 2.2.

Claim 3.2. Let H be an induced subgraph of G[V3− ] with |E(H)| ̸= 0. Then P̃(H) has no monomials
∏

z∈T (H)x
iz
z with nonzero

coefficient such that
∑

z∈T (H)iz = deg(P̃(H)) and iz ≤ 6 for each z ∈ T (H).

Claim 3.3. For any edge u1u2 in G[V3− ], we have the following two assertions.
(1) dG(u1) = dG(u2) = 3 and thus V2 is an independent set.
(2) At least one of u1 and u2 is adjacent to three 3-vertices.

Proof. For i = 1, 2, let di = dG(ui) − 1 and ki = |NG(ui) ∩ V4|. Since u1u2 ∈ E(G[V3− ]), we have 0 ≤ ki ≤ di ≤ 2. Let H be the
induced subgraph of G with vertex set V (H) = {u1, u2} and edge set {u1u2}, i.e. H = u1u2. For convenience denote xi = xui
for i = 1, 2 and y = xu1u2 . Then by the definition of P̃(H), we have

P̃(H) = (x21y)
d1 (x1 + y)d1−k1 (x1 − x2)(x1 + y − x2 − y)(x1 − y) · (x22y)

d2 (x2 + y)d2−k2 (x2 − y).

(1) We first prove that dG(u1) = dG(u2) = 3. Suppose to the contrary that, without loss of generality, dG(u1) ≤ 2 and
dG(u2) ≤ 3. Then 0 ≤ d1 ≤ 1 and 0 ≤ d2 ≤ 2. It is easy to check that deg(P̃(H)) = 4d1 + 4d2 − k1 − k2 + 4 and
that the coefficient of the monomial x3d1−k1+3

1 x2d22 yd1+2d2−k2+1 of P̃(H) is −1. We have that 3d1 − k1 + 3 ≤ 6, 2d2 ≤ 4,
d1 + 2d2 − k2 + 1 ≤ 6, and 3d1 − k1 + 3 + 2d2 + d1 + 2d2 − k2 + 1 = deg(P̃(H)), a contradiction to Claim 3.2. This proves
dG(u1) = dG(u2) = 3.

Note that the above assertion implies that V2− is an independent set of G[V3− ]. Otherwise, we would have an edge u1u2
in G[V3− ] with min{dG(u1), dG(u2)} ≤ 2, a contradiction to the fact that dG(u1) = dG(u2) = 3.

(2) We now prove that at least one of u1 and u2 is adjacent to three 3-vertices (See Fig. 1). Suppose to the contrary that
both u and v are adjacent to at most two 3-vertices. Then k1 ≥ 1 and k2 ≥ 1 since dG(u) = dG(v) = 3 and V2− is an
independent set of G[V3− ] by the first part of the claim. Let P = P̃(H) · (x1 + y)k1−1(x2 + y)k2−1. Since d1 = d2 = 2,

P = P̃(H) · (x1 + y)k1−1(x2 + y)k2−1

= (x21y)
2(x22y)

2(x1 + y)(x2 + y)(x1 − y)(x2 − y)(x1 − x2)2

= −2x61x
6
2y

6
− x41x

4
2y

6(x41 − 2x31x2 − 2x1x32 + x42) + x41x
4
2y

4(x21x
2
2 + y4)(x1 − x2)2.

Since deg(P) = 18 and the monomial x61x
6
2y

6 of P has coefficient −2, by Lemma 2.3, P̃(H) has a monomial xi11 x
i2
2 y

i3 with
nonzero coefficient such that i1 + i2 + i3 = deg(P̃(H)) and ij ≤ 6 for j = 1, 2, 3, a contradiction to Claim 3.2. ■

Claim 3.4. If u1u2u3u1 is a triangle in G[V3], then each ui is adjacent to three 3-vertices.

Proof. By Claim 3.3, at most one vertex in the triangle is adjacent to a 4-vertex. Suppose to the contrary (without loss of
generality) that u1 is adjacent to one 4-vertex, while both u2 and u3 are adjacent to three 3-vertices. Let H be the triangle
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Fig. 2. H and the corresponding variables in Claim 3.4.

u1u2u3u1. For convenience denote xi = xui for i = 1, 2, 3, y1 = xu1u2 , y2 = xu2u3 , and y3 = xu3u1 (See Fig. 2). Then we have

P̃(H) = (x21y1y3)(x1 − y1)(x1 − y3)(y1 − y3)(x1 − x2)(x1 + y3 − x2 − y2)
· (x22y1y2)(x2 + y1 + y2)(x2 − y1)(x2 − y2)(y1 − y2)(x2 − x3)(x2 + y1 − x3 − y3)
· (x23y2y3)(x3 + y2 + y3)(x3 − y2)(x3 − y3)(y2 − y3)(x3 − x1)(x3 + y2 − x1 − y1).

One can check that the coefficient of the monomial x51x
5
2x

5
3y

6
1y

6
2y

2
3 in P̃(H) is −1 and deg(P̃(H)) = 29, a contradiction to

Claim 3.2. ■

The final step. Let G1 be a connected component of G[V3] with |V (G1)| maximum, and let u1 ∈ V (G1) with dG1 (u1)
minimum. Then |V (G1)| ≥ 2 since V3 is not independent in G by Lemma 3.1 and V2− is an independent set of G[V3− ] by
Claim 3.3(1). Moreover, dG1 (u1) ≤ 2 since ∆(G) = 4 and G is connected. Pick an edge u1u2 ∈ E(G1). By Claim 3.3, u2 is
adjacent to three 3-vertices, and so let u3 ∈ NG1 (u2) \ {u1} ⊆ V3.

Let H = G[{u1, u2, u3}], k1 = |NG(u1) ∩ V4| and k3 = |NG(u3) ∩ V4|. Then 1 ≤ k1 ≤ 2 and 0 ≤ k3 ≤ 2. By Claim 3.4, H can
not be a triangle and thus H is an induced path u1u2u3 in G1. For convenience denote xi = xui for i = 1, 2, 3, y1 = xu1u2 , and
y2 = xu2u3 . Then we have

P̃(H) = (x21y1)
2(x1 + y1)2−k1 (x1 − y1)(x1 − x2)(x1 − x2 − y2)

· (x22y1y2)(x2 + y1 + y2)(x2 − y1)(x2 − y2)(y1 − y2)(x2 − x3)(x2 + y1 − x3)
· (x23y2)

2(x3 + y2)2−k3 (x3 − y2).

Let P = P̃(H) · (x1 +y1)k1−1(x3 +y2)k3 . One can check that deg(P) = 29 and the coefficient of themonomial x61x
6
2x

6
3y

5
1y

6
2 in P is

3. Therefore, by Lemma 2.3, P̃(H) has amonomial xi11 x
i2
2 x

i3
3 y

i4
1 y

i5
2 with nonzero coefficient such that ij ≤ 6 for each j = 1, . . . , 5

and i1 + · · · + i5 = deg(P̃(H)), a contradiction to Claim 3.2. This contradiction completes the proof of Theorem 1.4.
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